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Theorem 1. (Argument Principle) Let C be a closed contour and C encloses a domain U . Let f be
meromorphic in U with poles pi (i=1,...,n) and zeros zj (j=1,...,m) counted according to multiplicity
where pi and zj are inside U , then

1

2πi

∫
C

f ′

f
dz =

m∑
i=1

n(C, zi)−
n∑
j=1

n(C, pj)

Remark : n(C, zi) denotes the order of the poles or multiplicity of zeros inside the contour.

Remark : It can be viewed as
1

2πi

∫
z∈C

df

f − 0
. It is the winding number of f around the point

0. It is similar to
1

2πi

∫
|z−a|=1

dz

z − a
dz = 1.

Theorem 2. (Rouché’s Theorem (version 1)) Let C be a closed contour and C encloses a domain
U . Let f and g be analytic in U and on C. Suppose that |f | > |g| on C, then f and f + g have the
same number of zeros inside C.

Remark : Theorem 2 only tells to you that the numbers of roots of f and f + g are the same, but
their roots may not be the same!

Theorem 3. (Rouché’s Theorem (more powerful version)) Let C be a closed contour and C encloses
a domain U . Let f and g be analytic in U and on C. Suppose that |f | + |g| > |f + g| on C, then f
and g have the same number of zeros inside C.

Remark : You should be careful that the inequality must be strict and it is enough to hold only on
C.

Remark : Version 1 is powerful enough in many cases, but you can see that the second version
is more powerful. We will mainly apply version 1.

Example 1. Find the number of roots of the equation 2z5 − 6z2 + z + 1 = 0 inside the circle |z| = 2.

In the hypothesis of Rouché’s theorem, we want to find a polynomial to dominate the other
polynomial. Since the circle is C = {|z| = 2}, the term with largest power would dominate the other
term. Hence we let f = 2z5 and g = −6z2 + z + 1. On C, we check that

|f | = 64 and |g| ≤ 6(4) + 2 + 1 = 27.

Thus |f | > |g| on C, f has 5 roots inside C. Therefore, f + g = 2z5 − 6z2 + z + 1 = 0 has 5 roots
inside C.

Example 2. Find the number of roots of the equation 2z5 − 6z2 + z + 1 = 0 inside the circle |z| = 1.
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In this time, since the circle is C = {|z| = 1}, the term with largest coefficient would dominate
the other term. Hence we let f = −6z2 and g = 2z5 + z + 1. On C, we check that

|f | = 6 and |g| ≤ 2 + 1 + 1 = 4.

Thus |f | > |g| on C, f has 2 roots inside C. Therefore, f + g = 2z5 − 6z2 + z + 1 = 0 has 2roots
inside C.

Example 3. Find the number of roots of the equation f = z4+z3+4z2+2z+3 = 0 in each quadrants.

We would apply argument principle. Since polynomial with real coefficients have complex roots
in conjugate pairs. Also the coefficients are positive, so the polynomial has no positive real roots.

We check that f has no purely imaginary roots. Let z = yi, then

f = y4 − 4y2 + 3 + i(2y − y3).

If f = 0, we have y = 0 or ±
√

2 from the imaginary part, but f 6= 0 by substituting these values of y
into the real part of f .

We check that there is no negative real roots. On the real axis, we have

f ′ = 4z3 + 3z2 + 8z + 2 and f ′′ = 12z2 + 6z + 8 > 0.

From these, we see that f is convex and have local minima. Let x1 such that f ′(x1) = 4x31 + 3x21 +
8x1 + 2 = 0 and f(x1) is the global minimum. Then on the real axis,

f(z) ≥ f(x1) = x41 + x31 + 4x21 + 2x1 + 3

= x41 +
1

4
(4x31 + 16x21 + 8x1 + 12)

= x41 +
1

4
(−(3x21 + 8x1 + 2) + 16x21 + 8x1 + 12)

= x41 +
1

4
(13x21 + 10) > 0.

Hence there is no negative real root.

It is enough to consider the number of roots in the right half plane since there is no root on
the axis and the complex roots must be in conjugate pairs.

We take a contour C to be a right half circle with radius R,∫
C

f ′

f
dz =

∫ π/2

−π/2
+

∫ −Ri
Ri

f ′

f
dz.
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For the first integral, z = Reiθ∫ π/2

−π/2

f ′

f
dz =

∫ π/2

−π/2

4z3 + 3z2 + 8z + 2

z4 + z3 + 4z2 + 2z + 3
Reiθidθ

= i

∫ π/2

−π/2

4z4 + 3z3 + 8z2 + 2z

z4 + z3 + 4z2 + 2z + 3
dθ

= i

∫ π/2

−π/2

4 + 3
z

+ 8
z2

+ 2
z3

1 + 1
z

+ 4
z2

+ 2
z3

+ 3
z4

dθ

→ i

∫ π/2

−π/2
4dθ = 4πi as R→∞

For the second integral, ∫ −Ri
Ri

f ′

f
dz =

∫ −Ri
Ri

df

f − 0
.

To evaluate this integral, it is hard to compute it directly. However we know that this integral is the
winding number of f around 0, that is, the times f winds the point 0 from −Ri to Ri. If we set
z = yi, we have f = y4 − 4y2 + 3 + i(2y − y3). We find all the zero of the real and imaginary parts,
that is y = ±1,±

√
3 and y = 0,±

√
2.

y −∞ −
√

3 −
√

2 -1 0 1
√

2
√

3 ∞
Re(f) + 0 - 0 + 0 - 0 +
Im(f) 0 + 0 - 0 + 0 - 0

Thus,
1

2πi

∫ −Ri
Ri

f ′

f
dz → −2 as R → ∞. Combining our results,

∫
C

f ′

f
dz → 0 as R → ∞, which

implies that there is no root in the right half plane. Thus there are 0, 2, 2, 0 roots in quadrant I, II,
III, IV respective.

Exercise: If λ > 1, find the number of roots of the equation e−z + z − λ = 0 in the right half
plane.

Good luck to your exam! ><
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