THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics 2018 Spring MATH2230 Tutorial 10

There are three types of isolated singularity. We suppose that f is analytic function in $B_R(a) \setminus \{a\}$ (hence a is isolated singularity)

Definition 1. The point a is called a removable singularity if there is an analytic function \tilde{f} in $B_R(a)$ such that $\tilde{f} = f$ in $B_R(a) \setminus \{a\}$ ($\tilde{f} = f$ except at z = a)

Remark : It is the best behaved singularity, it is 'almost' an analytic function.

Theorem 1. The point a is a removable singularity iff $\lim_{z \to a} (z - a) f(z) = 0$.

Definition 2. The point *a* is called a pole if $\lim_{z \to a} |f(z)| = \infty$.

Theorem 2. If f has a pole at z = a, there is a positive integer m and an analytic function g in $B_R(a)$ such that $f = \frac{g}{(z-a)^m}$.

Definition 3. The point a is called an essential singularity if it is not neither removable singularity nor pole.

Remark : In this definition, we can see that $\lim_{z\to a} |f(z)|$ fails to exist, it will converges to different finite value and ∞ according to different path taken.

Theorem 3. (Casorati-Weierstrass theorem) If f has essential singularity at z = a, then for every $\delta > 0$, the closure of $f(B_{\delta}(a) \setminus \{a\}) = \mathbb{C}$

Remark : It tells us that given any $c \in \mathbb{C}$, there is z arbitrary close to a such that f(z) arbitrary close to c.

In the view of larrent series, we have the following conclusion,

Theorem 4. Let $f(z) = \sum_{n=0}^{\infty} a_n (z-a)^n + \sum_{n=1}^m \frac{b_n}{(z-a)^n}$ be its Larrent series in $B_R(a) \setminus \{a\}$, then

- z = a is a removable singularity iff $b_n = 0$ for $n \ge 1$,
- z = a is a pole of order m iff $b_m \neq 0$ and $b_n = 0$ for $n \geq m+1$
- z = a is an essential singularity iff $b_n \neq 0$ for infinitely many integers $n \ge 1$. (not necessary every n!)

Exercise:

1. Compute $\int_{0}^{2\pi} \frac{d\theta}{\sqrt{2} - \cos \theta}.$ 2. Compute $\int_{0}^{\infty} \frac{dx}{x^{4} + 1}.$ 3. Compute $\int_{0}^{\infty} \frac{x \sin 2x dx}{x^{4} + 2}.$