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Week 5 to 6 notes (preliminary version) 

(Please check for any typos!) 

 

 

Apart from the +, −,×,÷ of derivatives, there is one more rule, which formally looks like 

cancellation law of fractions.   

 

Chain Rule 

If 𝑓 is differentiable at 𝑔(𝑐), 𝑔 is differentiable at 𝑐, then 𝑓(𝑔(𝑥)) is differentiable at 𝑐. 

Further, we can compute the derivative of 𝑓(𝑔(𝑥)) at 𝑐 by the formula  

 

𝑑 𝑓(𝑔(𝑥))

𝑑𝑥
|

𝑥=𝑐

=  
𝑑 𝑓( 𝑦)

𝑑𝑦
|

𝑦=𝑓(𝑐)

𝑑 𝑦

𝑑𝑥
|

𝑥=𝑐
 

(Here we have let 𝑦 = 𝑓(𝑥)). 

 

Quick Idea on the Proof 

Three steps: (i) consider the difference quotient 
𝑓(𝑔(+ℎ))−𝑓(𝑔(𝑐))

ℎ
=

𝑓(𝑔(+ℎ))−𝑓(𝑔(𝑐))

𝑔(𝑐+ℎ)−𝑔(𝑐)
⋅

(
𝑔(𝑐+ℎ)−𝑔(𝑐)

ℎ
), (ii) let 𝑘 = 𝑔(𝑐 + ℎ) − 𝑔(𝑐), (iii) take limit and use 𝑔 is differentiable at 

𝑥 = 𝑐 implies g is continuous there. 

 

Remarks 

 Oftentimes we don’t write the |𝑦=𝑓(𝑐) or |𝑥=𝑐 

 Many people like to write 𝑓(𝑔(𝑥)) as (𝑓 ∘ 𝑔)(𝑥). 

 

Using Chain Rule, we can easily compute things like 

Example 

𝑑 𝑒𝑥2

𝑑𝑥
=

𝑑 𝑒𝑦

𝑑𝑦

𝑑𝑥2

𝑑𝑥
= 𝑒𝑦 ⋅ 2𝑥 = 𝑒𝑥2

⋅ 2𝑥 

Here we have let 𝑦 = 𝑥2. 

 

We need one more tool before we can go on to describe a “simple” method to show that a 

certain given function is 1-1 and onto. 

 

This tool is known as Mean Value Theorem. We introduce three of them. 

 



The Three Mean Value Theorems 

They are 

(1) Rolle’s Theorem, (2) Lagrange’s Mean Value Theorem, (3) Cauchy’s Mean Value 

Thereom. 

They are useful in (1) proving inequalities like | sin(𝑎) − sin(𝑏)| ≤ |𝑎 − 𝑏|, (2) proving the 

L’Hôpital Rule.  

Rolle’s Theorem: 

Assumptions 

 𝑓(𝑥) is differentiable in (𝑎, 𝑏). 

 𝑓(𝑥) is continuous on [a,b] (This is “technical assumption”, i.e. it’s used to kick start 

the “proof”) 

 𝑓(𝑎) = 𝑓(𝑏). 

Conclusion: 𝑓′(𝜉) = 0 ∃𝜉 ∈ (𝑎, 𝑏) 

 

 

As can be seen from the picture below, Rolle’s Theorem, when “rotated”, gives the 

Lagrange’s Mean Value Theorem. 

 

Lagrange’s Mean Value Theorem 

It says: “If a function satisfies only (1) and (2) below, then ∃𝜉 ∈ (𝑎, 𝑏) such that: 

𝑓′(𝜉) =
𝑓(𝑏)−𝑓(𝑎)

𝑏−𝑎
.”

a b 𝜉 



 

 

 

 

Examples for LMVT 

1) Show | sin(𝑎) − sin(𝑏)| ≤ |𝑎 − 𝑏| 

2) Let 𝑎 < 𝑏, show |tan−1(𝑎) − tan−1(𝑏)| ≤
1

1+𝑎2 |𝑎 − 𝑏 | 

Answers: 

1) It is important to remember that we have two cases (or more?)  

Case 1: (𝑎 ≠ 𝑏). We can suppose that 𝑎 < 𝑏. Consider the function 𝑓(𝑥) = sin(𝑥) in 

any domain slightly larger than the interval [𝑎, 𝑏]. You can choose for example [𝐴, 𝐵] 

satisfying 𝐴 < 𝑎, 𝑏 < 𝐵. This will ensure that all assumptions in LMVT are satisfied.  

Case 1, Now, we use LMVT to get 

𝑓(𝑏)−𝑓(𝑎)

𝑏−𝑎
= 𝑓′(𝜉), i.e. 

sin(𝑏)−sin(𝑎)

𝑏−𝑎
= cos(𝜉) ∃𝜉 ∈ (𝑎, 𝑏).) 

Case 2: If 𝑎 = 𝑏, then sin(𝑎) − sin(𝑏) = 0 = 𝑏 − 𝑎 , therefore the inequality is still 

satisfied (it is actually an “equality”). 

2) Consider the function 𝑓(𝑥) = arctan(𝑥) (in the lecture, I used the notation tan−1(𝑥), 

which means the same thing. I don’t use this here, because it can easily lead to 

misunderstandings). 

Then by letting 𝑦 = arctan(𝑥), one gets tan(𝑦) = 𝑥. Now both the left-hand side and 

the right-hand side are functions of 𝑥, so we can differentiate both sides and get 

𝑑 tan(𝑦)

𝑑𝑥
=

𝑑𝑥

𝑑𝑥
= 1 ⟹  

𝑑 tan(𝑦)

𝑑𝑦

𝑑𝑦

𝑑𝑥
= 1 ⟹ sec2(𝑦) 𝑦′ = 1 ⟹ 𝑦′ =

1

sec2(𝑦)
=

1

1+tan2(𝑦)
=

1

1+𝑥2. 

Hence we have 
𝑑 arctan(𝑥)

𝑑𝑥
=

1

1+𝑥2. 

Now we apply LMVT and obtain 

a b 𝜉 



arctan(𝑏) − arctan(𝑎)

𝑏 − 𝑎
=

𝑑 arctan(𝑥)

𝑑𝑥
|

𝑥=𝜉

=
1

1 + 𝑥2|
𝑥=𝜉

=
1

1 + 𝜉2
<

1

1 + 𝑎2
 

This is because 𝑎 < 𝜉. 

Conclusion: We’ve shown arctan(𝑏) − arctan(𝑎) <
1

1+𝑎2 × (𝑏 − 𝑎). 

 

 

LMVT & Strictly Increasing Functions 

One application of LMVT is the following result, which is useful in showing 1-1. 

 

Theorem. Suppose 𝑓: (𝑎, 𝑏) → ℝ is differentiable. Show that if 𝑓′(𝑥) > 0 ∀𝑥 ∈ (𝑎, 𝑏), 

then 𝑓 is strictly increasing. 

Proof: Pick any two numbers 𝑎, 𝑏 satisfying 𝑎 < 𝑏. Then the LMVT says that there is some 

𝜉 ∈ (𝑎, 𝑏) with the property that 

𝑓(𝑏) − 𝑓(𝑎)

𝑏 − 𝑎
= 𝑓′(𝜉) 

But this means that (because 𝑓′(𝜉) > 0 by our “positivity” assumption) the RHS is 

“positive”. Therefore the LHS is also “positive”, i.e. 
𝑓(𝑏)−𝑓(𝑎)

𝑏−𝑎
> 0.  

Now we know 𝑏 − 𝑎 > 0, hence it follows that 𝑓(𝑏) > 𝑓(𝑎). That is, 𝑓 is strictly 

increasing. 

 

Cauchy’s Mean Value Theorem 

There is one more mean value theorem by the French mathematician Cauchy. This is 

Cauchy’s Mean Value Theorem 

Assumptions: 

 Let 𝑓(𝑥), 𝑔(𝑥) be two differentiable functions in (𝑎, 𝑏).  

 Let 𝑓(𝑥), 𝑔(𝑥) be continuous on [𝑎, 𝑏]. 

 Let 𝑔′(𝑥) ≠ 0 ∀𝑥 ∈ (𝑎, 𝑏). (This guarantees that the denominator is not zero.) 

Then we have the  

Conclusion: 

∃𝜉 ∈ (𝑎, 𝑏):      
𝑓(𝑏) − 𝑓(𝑎)

𝑔(𝑏) − 𝑔(𝑎)
=

𝑓′(𝜉)

𝑔′(𝜉)
 

Cauchy’s MVT has many applications, one of which is L’Hôpital Rule 

 

L’Hôpital Rule 

L’Hôpital Rule says, if a limit lim
𝑥→𝑐

𝑓(𝑥)

𝑔(𝑥)
 is of the form 

0

0
 or 

±∞

±∞
, when 𝑥 → 𝑐 or 𝑥 → ±∞. 



And if the limit lim
𝑥→𝑐

𝑓′(𝑥)

𝑔′(𝑥)
 exists, then lim

𝑥→𝑐

𝑓(𝑥)

𝑔(𝑥)
= lim

𝑥→𝑐

𝑓′(𝑥)

𝑔′(𝑥)
 . 

 

Remark: 

Similar conclusion holds if instead of 𝑥 → 𝑐, we have 𝑥 → ∞, or 𝑥 → −∞. 

 

Example 

Find the limit lim
𝑥→0+

𝑥𝑥 . 

 

Answer: The idea is to consider 𝑒𝑥 ln 𝑥. This leads to our studying the limit 

lim
𝑥→0+

𝑥 ln 𝑥 

 

Now 𝑥 ln 𝑥 =
ln 𝑥

1

𝑥

 

So as 𝑥 → 0+, the limit is of the type 
0

0
. Therefore we are allowed to use L’Hôpital Rule. 

Using L’Hôpital Rule, we get lim
𝑥→0+

ln 𝑥

𝑥−1 = lim
𝑥→0+

𝑑 ln 𝑥

𝑑𝑥
𝑑 𝑥−1

𝑑𝑥

= lim
𝑥→0+

𝑥−1

−𝑥−2 = lim
𝑥→0+

(−𝑥) = 0−.  

 

Conclusion: Putting this back into lim
𝑥→0+

𝑒𝑥 ln 𝑥 = 𝑒
lim

𝑥→0+
𝑥 ln 𝑥

= 𝑒0−
= 1 

 

Remark: You can just write 0 for the answer (of course, 0− is more refined!).  

 

  

In our previous discussion, we learned how to differentiate 𝑦 with respect to 𝑥 in an 

equation like tan(𝑦) = 𝑥. 

 

Actually this can be done for “any” equation of the variables 𝑥, 𝑦. 

 

There is a theorem, i.e. the Implicit Function Theorem (IFT in short), which guarantees that 

this can be “done” (except for some fine technical details!) 

An example of how this is done is 

 

Example 

Find 𝑦′(𝑥), where 𝑥, 𝑦 satisfies the following equation. 

 

(𝑥2 + 𝑦2)2   = 𝑥2 − 𝑦2, then what does it mean? 



 

Fact: IFT implies any “equation” of such type leads to 𝑦 = function of 𝑥 (similar for 𝑥 =

𝑥(𝑦)). 

 

What is really happening is that the above (equation) defines curve(s). So 𝑦 = 𝑦(𝑥), 𝑥 =

𝑥(𝑦). 

 

Answer: 

We know that (𝑥2 + 𝑦2)2   = 𝑥2 − 𝑦2 implies 𝑦 = 𝑦(𝑥) (meaning “𝑦 is a function of 𝑥”), 

hence we can differentiate both sides of the equation with respect to 𝑥 and obtain 

𝑑 (𝑥2 + 𝑦2)2

𝑑𝑥
=

𝑑 (𝑥2 − 𝑦2)

𝑑𝑥
 

Now let 𝑢 = (𝑥2 + 𝑦2) then the LHS (=left-hand side) becomes 

𝑑 (𝑥2 + 𝑦2)2

𝑑𝑥
=

𝑑 𝑢2

𝑑𝑥
=

𝑑𝑢2

𝑑𝑢

𝑑𝑢

𝑑𝑥
= 2𝑢 ⋅

𝑑 (𝑥2 + 𝑦2)

𝑑𝑥
 

= 2𝑢 ⋅ (2𝑥 +
𝑑𝑦2

𝑑𝑥
) = 2(𝑥2 + 𝑦2) (2𝑥 +

𝑑𝑦2

𝑑𝑦
 .

𝑑𝑦

𝑑𝑥
) 

= 2(𝑥2 + 𝑦2)(2𝑥 + 2𝑦 . 𝑦′) 

The RHS is equal to 

𝑑 (𝑥2 − 𝑦2)

𝑑𝑥
= 2𝑥 −

𝑑𝑦2

𝑑𝑥
= 2𝑥 − 2𝑦𝑦′ 

Putting them together, we get 

4(𝑥2 + 𝑦2)(𝑥 + 2𝑦𝑦′) = 2𝑥 − 2𝑦𝑦′ 

Making 𝑦′ the subject we get the answer. 

 

Summary 

What the IFT says is basically that whenever there is an equation in 𝑥, 𝑦 of the form 

𝐹(𝑥, 𝑦) = 0 

then 𝑦 = 𝑦(𝑥) or 𝑥 = 𝑥(𝑦). (Of course, we need to make some “differentiability 

assumptions on 𝐹, but we will not give details here). 

 

The ideas is consider this equation as “two equations” in 3D. 

 

That is, 𝑧 = 𝐹(𝑥, 𝑦) & 𝑧 = 0 (In our example, 𝐹(𝑥, 𝑦) = (𝑥2 + 𝑦2)2 − 𝑥2 + 𝑦2.) 

 

The first equation represents a “surface” in the 3-dimensionla space, the second equation 

represents a horizontal plane in the 3-D space. Taken together, the two equations represent 

“intersection of a surface with a horizontal plane”, i.e. they lead to curves. 



 

(see the picture in the Appendix (pending)) 

 

 

 

How to show 1-1, onto for a given function 

Using the “𝑓′(𝑥) > 0  ∀𝑥 ∈ (𝑎, 𝑏) ⟹ strictly increasing/decreasing”, together with the 

following result (which we’ll not prove), we can easily show that a function is 1-1, onto. 

 

Intermediate Value Theorem 

Let 𝑓: [𝑎, 𝑏] → ℝ be continuous. Suppose also that 𝑓(𝑎) ⋅ 𝑓(𝑏) < 0, then 

𝑓(𝜉) = 0, ∃𝜉 ∈ (𝑎, 𝑏). 

 

Remark 

What this theorem says is very “intuitive”. It says, if 𝑓 is a continuous function, whose 

values at 𝑥 = 𝑎 and at 𝑥 = 𝑏 are of  “different signs” (正負號), then there must be at least 

one point 𝜉 where the curve 𝑦 = 𝑓(𝑥) intersects the 𝑥 −axis. 

 

Example of showing 1-1, onto 

Show that the function tan : (−
𝜋

2
,

𝜋

2
) → ℝ is 1-1, onto. 

Answer: To show “onto”, consider the equation 𝑓(𝑥) = tan(𝑥) 

This function is (i) continuous at every point 𝑐 ∈ (−
𝜋

2
,

𝜋

2
), because tan(𝑥) =

sin(𝑥)

cos(𝑥)
, sin(𝑥) 

is continuous at every such point and cos(𝑥) also, plus cos(𝑥) ≠ 0. Furthermore, the 

function 𝑓(𝑥) satisfies lim
𝑥→

𝜋

2

𝑓(𝑥) = ∞ , lim
𝑥→−

𝜋

2

𝑓(𝑥) = −∞, so it is onto. 

Next, we show 1-1. To see this, check that 𝑓′(𝑥) = sec2(𝑥) =
1

cos2(𝑥) 
> 0 

Hence the function is strictly increasing so it is 1-1. 

𝜉 

𝑎 𝑏 



 

Remark  Actually the argument for onto is slightly more complicated and uses the LMVT 

on subintervals of the form [−
𝜋

2
+

1

𝑛
,

𝜋

2
−

1

𝑛
]. 

  

Second Derivative Test – another Application of “𝒇′(𝒙) > 𝟎 ⟹ strict increasing” 

The following “second derivative test” is another application of “𝑓′(𝑥) > 0 ⟹

𝑓 strictly increasing” (similarly “𝑓′(𝑥) < 0 ⟹ 𝑓 strictly decreasing”) 

 

 

 

 

 

Local Max/Min Points, Local Max/MinValues 

 

The two blue points are local minimum/maximum points (why local? Because the function is 

has smallest/largest values than “nearby” points only). 

At such points, say “𝑐1”, the function has “horizontal tangent”, i.e. 𝑓′(𝑐1) = 0. 

 

At a local minimum point, to the left of it, the function is strictly decreasing, to the right 

strictly increasing, i.e. 𝑓′(𝑐1 − 𝑠𝑡ℎ. ) < 0, 

𝑓′(𝑐1 + 𝑠𝑡ℎ ) > 0 

More precisely, 𝑓′(𝑐 − ℎ) < 0, 𝑓′(𝑐 + ℎ) > 0, ∀ℎ  sufficiently small. 

But this means the new function 𝑓′(𝑥) goes from negative to 0 to positive, i.e.  the function 

𝑓′(𝑥) is strictly increasing at the point “𝑐1”. 

 

Similar for “local maximum” point. 

 

Summary 



Let 𝑓: (𝑎, 𝑏) → ℝ have derivative and derivative of derivative (i.e. second derivative, or 

𝑓′′(𝑥)) at all points in (𝑎, 𝑏), then if  

1. 𝑓′(𝑐1) = 0, 

2. 𝑓′′(𝑐1) > 0 

Then 𝑓 has a local minimum point at 𝑐1. 

 

Similar for local maximum point. 

Name: This is called the “second derivative” test for local maximum/minimum. 

Terminologies local max/min point, local max/min value. 

 

Example (Arithmetic Mean ≥ Geometic Mean) 

Question: Show that 𝑎3 + 𝑏3 + 𝑐3 ≥ 3𝑎𝑏𝑐, 𝑎, 𝑏, 𝑐 > 0 using the fact that 𝑎2 + 𝑏2 ≥ 2𝑎𝑏 

Answer: Consider the function 𝑓(𝑥) = 𝑎3 + 𝑏3 + 𝑥3 − 3𝑎𝑏𝑥, 𝑥 > 0. Our goal is to show the 

function is always ≥ 0. 

Method:  

𝑓′(𝑥) = 3𝑥2 − 3𝑎𝑏 = 3(𝑥2 − 𝑎𝑏) 

Putting this equal to zero, we find 𝑓′(𝑥) = 0 ⟹ 𝑥 = √𝑎𝑏 

Question: 

Is this local max or local min point? 

We check then 𝑓′′(√𝑎𝑏) = 6√𝑎𝑏 > 0 

Hence it is local min point. Therefore, 𝑓(𝑥) = 𝑎3 + 𝑏3 + 𝑥3 − 3𝑎𝑏𝑥 ≥ 𝑎3 + 𝑏3 

 

DIY Question 

Show that actually √𝑎𝑏 is a “global” min. point. 

Answer: The function 𝑓(𝑥) = 𝑥3 − 3𝑎𝑏𝑥 + 𝑎3 + 𝑏3. 

Therefore after differentiation, it becomes 

𝑓′(𝑥) = 3(𝑥2 − 𝑎𝑏) = 3(𝑥 − (−√𝑎𝑏 ))(𝑥 − √𝑎𝑏 ) 

This implies that 𝑓′(𝑥) > 0, if 𝑥 > √𝑎𝑏 , i.e. 𝑓 is strictly increasing if 𝑥 > √𝑎𝑏 . 

Similarly, one sees that 𝑓 is strictly decreasing if −√𝑎𝑏 < 𝑥 < √𝑎𝑏 . 

In our case, 0 < 𝑥, so it remains to check the “strict increasing/decreasingness” of 𝑓 for 𝑥 

satisfying 0 < 𝑥 < √𝑎𝑏. But in this region, 𝑓 is “strictly decreasing”. 

 

Conclusion: Since 𝑓 is strictly decreasing for 0 < 𝑥 < √𝑎𝑏 and strictly increasing for 

√𝑎𝑏 < 𝑥, therefore √𝑎𝑏 is an absolute (some people call it “global”) min. point. 

 

 

Another Way of understanding LMVT = Taylor’s Theorem 

LMVT says 
𝑓(𝑏)−𝑓(𝑎)

𝑏−𝑎
= 𝑓′(𝜉) for functions satisfying certain conditions. Now let’s make the 



following changes: 

 Change 𝑏 to 𝑥, 

 Change 𝑎 to 𝑐. 

Then we obtain 
𝑓(𝑥)−𝑓(𝑐)

𝑥−𝑐
= 𝑓′(𝜉)  ∃𝜉 ∈ (𝑐, 𝑥)  or (𝑥, 𝑐) 

Rearranging the terms, we obtain 𝑓(𝑥) = 𝑓(𝑐) + 𝑓′(𝜉)(𝑥 − 𝑐) = 𝑓(𝑐) +
𝑓′(𝜉)

1!
(𝑥 − 𝑐), 

which means LHS (i.e. 𝑦 = 𝑓(𝑥)) is equal to 𝑦 = 𝑓(𝑐) plus an error term of the form 

𝑓′(𝜉)

1!
(𝑥 − 𝑐)1.  

 

Picture 

 

 

Remarks 

 The blue curve is the curve given by 𝑦 = 𝑓(𝑥). 

 The red line is the line given by 𝑦 = 𝑓(𝑐). 

 The error term is the term given by 
𝑓′(𝜉)

1!
⋅ (𝑥 − 𝑐). 

 The error term becomes 0, if 𝑥 = 𝑐. 

 The point 𝑐 is called the “center”. 

 This approximation of the curve 𝑦 = 𝑓(𝑥) by the line 𝑦 = 𝑓(𝑐) is too crude. 

Taylor’ Theorem says that we can do better and have the formula 

𝑓(𝑥) = 𝑓(𝑐) +
𝑓′(𝑐)

1!
(𝑥 − 𝑐)1 +

𝑓′′(𝑐)

2!
(𝑥 − 𝑐)2 + ⋯ +

𝑓(𝑛)(𝑐)

𝑛!
(𝑥 − 𝑐)𝑛

+ error term 

       Here the error term is given by 
𝑓(𝑛+1)(𝜉)

(𝑛+1)!
(𝑥 − 𝑐)𝑛+1. 

c 𝑥 

Error term 


