MATH1010D/1510E

Week 3 to 4 notes (preliminary version)
(Please check for any typos!)

A Special Limit

We want to study the limit $\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x}$.

Remark: If by some methods, we know that this limit exists (and is finite), then by the "uniqueness" of limit, we know that "no matter how x approaches infinity, the limit is the same", hence we can conclude that (if limit is known to exists), then

$$
\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x}=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}
$$

In the last expression, n denotes natural numbers.

Question: How do we know that the limit $\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x}$ exists?
Answer: We will use a theorem, which holds also for function, namely

```
Theorem (Monotone Convergence Theorem)
Let {\mp@subsup{a}{n}{}}\mathrm{ be a sequence of numbers satisfying}
(i) It is increasing, i.e. }\mp@subsup{a}{n}{}\leq\mp@subsup{a}{n+1}{},\foralln\in\mathbb{N
(ii) It is bounded from above, i.e. there exists some number M such that }\mp@subsup{a}{n}{}\leqM\mathrm{ ,
    \foralln\in\mathbb{N}
Conclusion: Then the sequence must have a limit.
Remarks: Same conclusion holds if we have (i) the sequence is decreasing, (ii) it is bounded from below, i.e. \(\exists M\), s.t. \(M \leq a_{n}, \forall n \in \mathbb{N}\).
```

Proof of the "existence of $\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}$.

Two steps. (Step 1) we show that the sequence $a_{n}=\left(1+\frac{1}{n}\right)^{n}$ is increasing..

Proof: We we'll use the inequality $\frac{b_{1}+b_{2}+\cdots+b_{n}}{n} \geq\left(b_{1} b_{2} \cdots b_{n}\right)^{\frac{1}{n}}$, where $b_{1}, b_{2}, \cdots, b_{n}>0$. (this inequality is called Arithmetic Mean-Geometric Mean (AM-GM) inequality).

To see how it is used, we consider

$$
a_{n}=\left(1+\frac{1}{n}\right)^{n}=\underbrace{(1+1 / \mathrm{n})}_{b_{1}} \cdot \underbrace{(1+1 / \mathrm{n})}_{b_{2}} \cdots \underbrace{(1+1 / \mathrm{n})}_{b_{n}} \cdot \underbrace{1}_{b_{n+1}}
$$

Here there are n copies of $\left(1+\frac{1}{n}\right)$ and 1 copy of "one"!
By the AM-GM inequality, this has to be $\leq\left(\frac{b_{1}+b_{2}+\cdots+b_{n+1}}{n+1}\right)^{n+1}$
But $b_{1}+b_{2}+\cdots+b_{n+1}=\left(1+\frac{1}{n}\right)+\left(1+\frac{1}{n}\right)+\cdots+\left(1+\frac{1}{n}\right)+1=n \cdot\left(1+\frac{1}{n}\right)+1=n+$ 2 , therefore

$$
\frac{b_{1}+b_{2}+\cdots+b_{n+1}}{n+1}=\frac{n+2}{n+1}
$$

It follows that

$$
\left(\frac{b_{1}+b_{2}+\cdots+b_{n+1}}{n}\right)^{n+1}=\left(\frac{n+2}{n+1}\right)^{n+1}=\left(1+\frac{1}{n+1}\right)^{n+1}=a_{n+1}
$$

So we have shown that $a_{n} \leq a_{n+1}$.

Next, we show that $\left\{a_{n}\right\}$ is bounded from above by some number.
Proof: Idea is to use the two ways of representing $\left\{a_{n}\right\}$, namely
(a) $\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}$
(b) $1+1+\frac{1}{2!}+\frac{1}{3!}+\cdots+\frac{1}{n!}+\cdots$

First, we see that $\left(1+\frac{1}{n}\right)^{n}=1+1+\frac{n(n-1)}{2!}\left(\frac{1}{n^{2}}\right)+\cdots+\frac{(n-0)(n-1) \cdots(n-(k-1))}{k!}\left(\frac{1}{n^{k}}\right)$

$$
\begin{gathered}
=1+1+\frac{n(n-1)}{n \cdot n}\left(\frac{1}{2!}\right)+\cdots+\frac{(n-0)(n-1) \cdots(n-(k-1))}{n \cdot n \cdots \cdots}\left(\frac{1}{k!}\right) \\
=1+1+1 \cdot\left(\frac{n-1}{n}\right)\left(\frac{1}{2!}\right)+\cdots+\left(\frac{n-1}{n}\right)\left(\frac{n-2}{n}\right) \cdots\left(\frac{n-(k-1)}{n}\right)\left(\frac{1}{k!}\right) \\
\leq 1+1+1 \cdot 1\left(\frac{1}{2!}\right)+\cdots+1(1) \cdots(1)\left(\frac{1}{k!}\right)
\end{gathered}
$$

since each of the term $\frac{n-1}{n}, \frac{n-2}{n}, \cdots, \frac{n-(k-1)}{n}$ is less than 1 .

Finally, we study the expression $1+1+\left(\frac{1}{2!}\right)+\cdots+\left(\frac{1}{k!}\right)$ which is equal to

$$
\begin{aligned}
1+1 & +\frac{1}{2 \cdot 1}+\frac{1}{3 \cdot 2 \cdot 1}+\cdots+\frac{1}{k(k-1)(k-2) \cdots 1} \\
& <1+1+\frac{1}{2 \cdot 1}+\frac{1}{3 \cdot 2}+\cdots+\frac{1}{k(k-1)}
\end{aligned}
$$

where we have "thrown away" all but the (first two) factors in each denominator,

Question: How large is the expression

$$
1+1+\frac{1}{2 \cdot 1}+\frac{1}{3 \cdot 2}+\cdots+\frac{1}{k(k-1)} ?
$$

Well, it can be estimated easily by

$$
\begin{gathered}
1+1+\frac{1}{2 \cdot 1}+\frac{1}{3 \cdot 2}+\cdots+\frac{1}{k(k-1)}=1+1+\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\cdots+\left(\frac{1}{k-1}-\frac{1}{k}\right) \\
=1+1+1-\frac{1}{k}<3
\end{gathered}
$$

Conclusion: $a_{n}<3$ and so 3 is an upper bound of the sequence $\left\{a_{n}\right\}$.

A Second Special Limit

Let $f:(a, b) \rightarrow \mathbb{R}$ be a function and c be a point in (a, b).

Consider the limit $\lim _{h \rightarrow 0} \frac{f(c+h)-f(c)}{h}$. (Here h is the variable).

Definition: If the above limit exists (and finite), then we say the function " f is (differentiable) at the point c ".

Remark: Sometimes, we like to write the above limit in the form $\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}$. This is correct because if we let $h=x-c$ (here x is the variable!), then

$$
\lim _{h \rightarrow 0} \frac{f(c+h)-f(c)}{h}=\lim _{x \rightarrow c \rightarrow 0} \frac{f(x)-f(c)}{x-c}
$$

Next, note that $h \rightarrow 0$ is equivalent to $x-c \rightarrow 0$ which is equivalent to $x \rightarrow c$.
Therefore we have $\lim _{x \rightarrow c \rightarrow 0} \frac{f(x)-f(c)}{x-c}=\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}$ as required.

Some examples for this special limit

Example(s)

Compute $\lim _{h \rightarrow 0} \frac{f(c+h)-f(c)}{h}$, where $f(x)=\sin x$.

Answer: (Step 1) Important point is to remember the formula

$$
\sin (c+h)=\sin (c) \cos (h)+\sin (h) \cos (c)
$$

Using this, one gets

$$
\begin{aligned}
\frac{f(c+h)-f(c)}{h} & =\frac{\sin (c) \cos (h)+\sin (h) \cos (c)-\sin (c)}{h} \\
& =\frac{\sin (c)[\cos (h)-1]+\sin (h) \cos (c)}{h}
\end{aligned}
$$

(Step 2) Let $h \rightarrow 0$.
Important Point - remember the special limit $\lim _{h \rightarrow 0} \frac{\sin (h)}{h}=1$.

This will lead to the terms in "red" color to go to 1 .

How about the term $\lim _{h \rightarrow 0} \frac{\cos (h)-1}{h}$?
(Idea) Relate it to the limit $\lim _{x \rightarrow 0} \frac{\sin (x)}{x}=1$.

This can be done by the double-angle formula, i.e. $\cos (h)=1-2 \sin ^{2}\left(\frac{h}{2}\right)$
Applying this formula to the algebraic expression $\frac{\cos (h)-1}{h}$, we obtain $\frac{\cos (h)-1}{h}=\frac{-2 \sin ^{2}\left(\frac{h}{2}\right)}{h}$

$$
=\frac{-2 \sin ^{2}\left(\frac{h}{2}\right)}{\left(\frac{h}{2}\right) \cdot\left(\frac{h}{2}\right) \cdot 2}\left(\frac{h}{2}\right)=\frac{-2 \sin ^{2}\left(\frac{h}{2}\right)}{\left(\frac{h}{2}\right)^{2} \cdot 2}\left(\frac{h}{2}\right)
$$

This implies $=\lim _{\frac{h}{2} \rightarrow 0} \frac{-2 \sin ^{2}\left(\frac{h}{2}\right)}{\left(\frac{h}{2}\right)^{2}}\left(\frac{h}{2 \cdot 2}\right)=0$.

Hence it follows that $\lim _{h \rightarrow 0} \frac{\cos (h)-1}{h}=0$.

Combining everything we have $\lim _{h \rightarrow 0} \frac{\sin (c+h)-\sin (c)}{h}=\lim _{h \rightarrow 0} \frac{\sin (h)}{h} \cdot \cos (c)=\cos (c)$.

Similar Examples

One can show, using similar techniques, that
(a) $\lim _{h \rightarrow 0} \frac{\cos (c+h)-\cos (c)}{h}=-\sin (c)$,
(b) $\lim _{h \rightarrow 0} \frac{e^{c+h}-e^{c}}{h}=e^{c}$.

Some Notations and the Geometric Meaning of $\lim _{h \rightarrow 0} \frac{f(c+h)-f(c)}{h}$.

Let $f:(a, b) \rightarrow \mathbb{R}$ be a function, $c \in(a, b)$. We say f is "differentiable" at c, if the limit $\lim _{h \rightarrow 0} \frac{f(c+h)-f(c)}{h}$ exists.

Remark: When we say a limit exists, we mean (a) the left-hand limit exists, (b) the righthand limit exists, (c) the two limits are the same.

Notations and a Terminology

Usually, we denote the limit $\lim _{h \rightarrow 0} \frac{f(c+h)-f(c)}{h}$ by the symbols $f^{\prime}(c),\left.\frac{d f}{d x}\right|_{x=c},\left.\frac{d f(x)}{d x}\right|_{x=c}$
We call this number $f^{\prime}(c)$ the "derivative" of the function f at the point c.
(The last one is used when we want to emphasize the fact that x is the variable of the function f)

We also want to give a notation to the "quotient" $\frac{f(c+h)-f(c)}{h}$ by writing it as $\left.\frac{\Delta f}{\Delta x}\right|_{x=c}$ or
$\left.\frac{\Delta f(x)}{\Delta x}\right|_{x=c}$.
(The last one is used when we want to emphasize the fact that x is the variable of the function f)

Geometric Meaning of Derivative

In short, $f^{\prime}(c)$ is the "slope of the tangent line to the curve $y=f(x)$ at the point c."

Remark: It should be emphasized that (a) only straight lines have slopes, (b) tangent line is a straight line, (c) therefore it has a slope, given by $f^{\prime}(c)$.

Question: What is a tangent line? Intuitively speaking, it is a line that "touches" the curve $y=f(x)$ at c. This intuition has many drawbacks, as we will outline in the next lectures.

Example

Find $f^{\prime}(0)$ for the function

$$
f(x)=\left\{\begin{array}{cc}
x^{2} \sin \left(\frac{1}{x}\right), & x \neq 0 \\
0, & x=0
\end{array}\right.
$$

Answer:

(Step 1) Consider the quotient

$$
\left.\frac{\Delta f}{\Delta x}\right|_{x=0}=\frac{h^{2} \sin \left(\frac{1}{h}\right)-0}{h}=h \sin \left(\frac{1}{h}\right)
$$

(Step 2) Let $h \rightarrow 0$ and obtain

$$
\left.\lim _{h \rightarrow 0} \frac{\Delta f}{\Delta x}\right|_{x=0}=\lim _{h \rightarrow 0} h \sin \left(\frac{1}{h}\right)=0
$$

by the Sandwich (or Squeeze) Theorem.

Conclusion: $f^{\prime}(0)=0$.

Differentiable implies Continuous

Previously we mentioned that if a function f satisfies
(a) $\lim _{x \rightarrow c^{+}} f(x)=L_{1}$
(b) $\lim _{x \rightarrow c^{-}} f(x)=L_{2}$
(c) $L_{1}=L_{2}$
(d) $f(c)=L_{1}=L_{-} 2$

Then we say " f is continuous at c ".

Notations: We can write (a) - (d) in a more compact form, i.e. $\lim _{x \rightarrow c} f(x)=f(c)$, meaning (a) left-limit exists, right-limit exists, these two limits are the same \& (b) both of them are equal
to the number $f(c)$.

There is a beautiful result saying that a function which is differentiable (i.e. has no corner) at c must be continuous at c.

Remark: What the above says is that " f is differentiable at $c \Rightarrow f$ is continuous at c " This is the same as saying " f is not continuous at $c \Rightarrow f$ is not differentiable at c "

Proof:

Goal: To show " f is continuous at c ", i.e. $\lim _{x \rightarrow c} f(x)=f(c)$.
Trick: Rewrite this in the form $\lim _{x \rightarrow c}[f(x)-f(c)]=0$
(Step 1) Consider $f(x)-f(c)=\frac{f(x)-f(c)}{x-c} \cdot(x-c)$.
(Step 2) We know that the limit $\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}$ exists, the limit $\lim _{x \rightarrow c}(x-c)=0$ exists.
Hence by the product of limits, we get
$\lim _{x \rightarrow c} f(x)-f(c)$ exists and is equal to the "product" of the limit $\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}$ and the limit

$$
\lim _{x \rightarrow c}(x-c)
$$

(Step 3) Now we know that the limit $\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}$ is a finite number, the limit $\lim _{x \rightarrow c}(x-c)$ is zero. Hence their product is

$$
\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c} \cdot \lim _{x \rightarrow c}(x-c)=0 .
$$

Conclusion: $\lim _{x \rightarrow c}[f(x)-f(c)]=\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c} \cdot \lim _{x \rightarrow c}(x-c)=0$.
Therefore f is continuous at c.

Arithmetic of Derivatives

We have
(a) $(\alpha f \pm \beta g)^{\prime}(c)=\alpha f^{\prime}(c) \pm \beta g^{\prime}(c)$, where α, β are constants.
(b) $(f \cdot g)^{\prime}(c)=f(c) g^{\prime}(c)+f^{\prime}(c) g(c)$.
(c) $\left(\frac{f}{g}\right)^{\prime}(c)=\frac{f^{\prime}(c) g(c)-f(c) g^{\prime}(c)}{[g(c)]^{2}}$, provided $g(c) \neq 0$.

