
MATH1010D/1510E 

Week 3 to 4 notes (preliminary version) 

(Please check for any typos!) 

A Special Limit 

We want to study the limit lim
𝑥→∞

(1 +
1

𝑥
)
𝑥
. 

 

Remark: If by some methods, we know that this limit exists (and is finite), then by the 

“uniqueness” of limit, we know that “no matter how 𝑥 approaches infinity, the limit is the 

same”, hence we can conclude that (if limit is known to exists), then  

lim
𝑥→∞

(1 +
1

𝑥
)
𝑥

= lim
𝑛→∞

(1 +
1

𝑛
)
𝑛

 

In the last expression, 𝑛 denotes natural numbers. 

 

Question: How do we know that the limit lim
𝑥→∞

(1 +
1

𝑥
)
𝑥
 exists? 

Answer: We will use a theorem, which holds also for function, namely 

 

Proof of the “existence of lim
𝑛→∞

(1 +
1

𝑛
)
𝑛

. 

 

Two steps. (Step 1) we show that the sequence 𝑎𝑛 = (1 +
1

𝑛
)
𝑛

 is increasing.. 

 

Proof: We we’ll use the inequality 
𝑏1+𝑏2+⋯+𝑏𝑛

𝑛
≥ (𝑏1𝑏2⋯𝑏𝑛)

1

𝑛, where 𝑏1, 𝑏2,⋯ , 𝑏𝑛 > 0. 

(this inequality is called Arithmetic Mean-Geometric Mean (AM-GM) inequality). 

 

Theorem (Monotone Convergence Theorem) 

Let {𝑎𝑛} be a sequence of numbers satisfying 

(i) It is increasing, i.e. 𝑎𝑛 ≤ 𝑎𝑛+1, ∀𝑛 ∈ ℕ 

(ii) It is bounded from above, i.e. there exists some number 𝑀 such that 𝑎𝑛 ≤ 𝑀,

∀𝑛 ∈ ℕ 

Conclusion: Then the sequence must have a limit.  

 

Remarks: Same conclusion holds if we have (i) the sequence is decreasing, (ii) it is 

bounded from below, i.e. ∃𝑀, s.t. 𝑀 ≤ 𝑎𝑛, ∀𝑛 ∈ ℕ. 



To see how it is used, we consider 

𝑎𝑛 = (1 +
1

𝑛
)
𝑛

= (1 + 1/n)⏟      
𝑏1

⋅ (1 + 1/n)⏟      
𝑏2

⋯(1 + 1/n)⏟      
𝑏𝑛

⋅ 1⏟
𝑏𝑛+1

 

. 

Here there are 𝑛 copies of (1 +
1

𝑛
) and 1 copy of “one”! 

By the AM-GM inequality, this has to be ≤ (
𝑏1+𝑏2+⋯+𝑏𝑛+1

𝑛+1
)
𝑛+1

 

But 𝑏1 + 𝑏2 +⋯+ 𝑏𝑛+1 = (1 +
1

𝑛
) + (1 +

1

𝑛
) +⋯+ (1 +

1

𝑛
) + 1 = 𝑛 ⋅ (1 +

1

𝑛
) + 1 = 𝑛 +

2, therefore 

 

𝑏1 + 𝑏2 +⋯+ 𝑏𝑛+1
𝑛 + 1

=
𝑛 + 2

𝑛 + 1
 

It follows that  

 (
𝑏1 + 𝑏2 +⋯+ 𝑏𝑛+1

𝑛
)
𝑛+1

= (
𝑛 + 2

𝑛 + 1
)
𝑛+1

= (1 +
1

𝑛 + 1
)
𝑛+1

= 𝑎𝑛+1 

   

So we have shown that 𝑎𝑛 ≤ 𝑎𝑛+1. 

 

Next, we show that {𝑎𝑛} is bounded from above by some number. 

Proof: Idea is to use the two ways of representing {𝑎𝑛}, namely  

(a) lim
𝑛→∞

(1 +
1

𝑛
)
𝑛

 

(b) 1 + 1 +
1

2!
+
1

3!
+⋯+

1

𝑛!
+⋯ 

First, we see that (1 +
1

𝑛
)
𝑛
= 1 + 1 +

𝑛(𝑛−1)

2!
(
1

𝑛2
) +⋯+

(𝑛−0)(𝑛−1)⋯(𝑛−(𝑘−1))

𝑘!
(
1

𝑛𝑘
) 

= 1 + 1 +
𝑛(𝑛 − 1)

𝑛 ⋅  𝑛
(
1

2!
) +⋯+

(𝑛 − 0)(𝑛 − 1)⋯ (𝑛 − (𝑘 − 1))

𝑛 ⋅ 𝑛 ⋅ ⋯            𝑛           
(
1

𝑘!
) 

= 1 + 1 + 1 ⋅ (
𝑛 − 1

𝑛
) (
1

2!
) + ⋯+ (

𝑛 − 1

𝑛
) (
𝑛 − 2

𝑛
)⋯(

𝑛 − (𝑘 − 1)

𝑛
) (
1

𝑘!
) 

≤ 1 + 1 + 1 ⋅ 1 (
1

2!
) + ⋯+ 1(1)⋯ (1) (

1

𝑘!
) 

since each of the term 
𝑛−1

𝑛
,
𝑛−2

𝑛
, ⋯ ,

𝑛−(𝑘−1)

𝑛
 is less than 1. 

 

Finally, we study the expression 1 + 1 + (
1

2!
) +⋯+ (

1

𝑘!
) which is equal to 



1 + 1 +
1

2 ⋅ 1
+

1

3 ⋅ 2 ⋅ 1
+ ⋯+

1

𝑘(𝑘 − 1)(𝑘 − 2)⋯1
 

< 1 + 1 +
1

2 ⋅ 1
+

1

3 ⋅ 2
+ ⋯+

1

𝑘(𝑘 − 1)
 

where we have “thrown away” all but the (first two) factors in each denominator,  

 

Question: How large is the expression 

1 + 1 +
1

2 ⋅ 1
+

1

3 ⋅ 2
+⋯+

1

𝑘(𝑘 − 1)
 ? 

Well, it can be estimated easily by  

 

1 + 1 +
1

2 ⋅ 1
+

1

3 ⋅ 2
+⋯+

1

𝑘(𝑘 − 1)
= 1 + 1 + (1 −

1

2
) + (

1

2
−
1

3
) +⋯+ (

1

𝑘 − 1
−
1

𝑘
) 

= 1 + 1 + 1 −
1

𝑘
< 3 

Conclusion: 𝑎𝑛 < 3 and so 3 is an upper bound of the sequence {𝑎𝑛}. 

 

 

A Second Special Limit 

Let 𝑓: (𝑎, 𝑏) → ℝ be a function and 𝑐 be a point in (𝑎, 𝑏). 

 

Consider the limit lim
ℎ→0

𝑓(𝑐+ℎ)−𝑓(𝑐)

ℎ
. (Here ℎ is the variable). 

 

Definition: If the above limit exists (and finite), then we say the function “𝑓 is 

(differentiable) at the point 𝑐”. 

 

Remark: Sometimes, we like to write the above limit in the form lim
𝑥→𝑐

𝑓(𝑥)−𝑓(𝑐)

𝑥−𝑐
. This is 

correct because if we let ℎ = 𝑥 − 𝑐 (here 𝑥 is the variable!), then 

 

lim
ℎ→0

𝑓(𝑐 + ℎ) − 𝑓(𝑐)

ℎ
= lim
𝑥−𝑐→0

𝑓(𝑥) − 𝑓(𝑐)

𝑥 − 𝑐
 

Next, note that ℎ → 0 is equivalent to 𝑥 − 𝑐 → 0 which is equivalent to 𝑥 → 𝑐. 

Therefore we have lim
𝑥−𝑐→0

𝑓(𝑥)−𝑓(𝑐)

𝑥−𝑐
= lim
𝑥→𝑐

𝑓(𝑥)−𝑓(𝑐)

𝑥−𝑐
 as required. 

 

 



Some examples for this special limit 

 

Example(s) 

Compute lim
ℎ→0

𝑓(𝑐+ℎ)−𝑓(𝑐)

ℎ
, where 𝑓(𝑥) = sin 𝑥. 

 

Answer: (Step 1) Important point is to remember the formula  

 

sin(𝑐 + ℎ) = sin(𝑐) cos(ℎ) + sin(ℎ) cos(𝑐) 

 

Using this, one gets 

𝑓(𝑐 + ℎ) − 𝑓(𝑐)

ℎ
=
sin(𝑐) cos(ℎ) + sin(ℎ) cos(𝑐) − sin(𝑐)

ℎ

=
sin(𝑐) [cos(ℎ) − 1] + sin(ℎ) cos(𝑐)

ℎ
 

(Step 2) Let ℎ → 0. 

Important Point – remember the special limit lim
ℎ→0

sin(ℎ)

ℎ
= 1. 

 

This will lead to the terms in “red” color to go to 1. 

 

How about the term  lim
ℎ→0

cos(ℎ)−1

ℎ
 ? 

(Idea) Relate it to the limit lim
𝑥→0

sin(𝑥)

𝑥
= 1. 

 

This can be done by the double-angle formula, i.e. cos(ℎ) = 1 − 2 sin2 (
ℎ

2
)  

Applying this formula to the algebraic expression 
cos(ℎ)−1

ℎ
, we obtain 

cos(ℎ)−1

ℎ
=
−2sin2(

ℎ

2
)

ℎ
 

=
−2sin2 (

ℎ
2)

(
ℎ
2) ⋅ (

ℎ
2) ⋅ 2

 (
ℎ

2
) =

−2 sin2 (
ℎ
2)

(
ℎ
2)
2

⋅ 2

 (
ℎ

2
) 

This implies = lim
ℎ

2
→0

−2sin2(
ℎ

2
)

(
ℎ

2
)
2  (

ℎ

2⋅2
) = 0. 

 

Hence it follows that lim
ℎ→0

cos(ℎ)−1

ℎ
= 0. 



Combining everything we have lim
ℎ→0

sin(𝑐+ℎ)−sin (𝑐)

ℎ
= lim
ℎ→0

sin (ℎ)

ℎ
⋅ cos(𝑐) = cos(𝑐). 

 

 

Similar Examples 

One can show, using similar techniques, that  

 

(a) lim
ℎ→0

cos(𝑐+ℎ)−cos (𝑐)

ℎ
= −sin(𝑐), 

(b) lim
ℎ→0

𝑒𝑐+ℎ−𝑒𝑐

ℎ
= 𝑒𝑐 . 

 

 

Some Notations and the Geometric Meaning of 𝐥𝐢𝐦
𝒉→𝟎

𝒇(𝒄+𝒉)−𝒇(𝒄)

𝒉
. 

 

Let 𝑓: (𝑎, 𝑏) → ℝ be a function, 𝑐 ∈ (𝑎, 𝑏). We say 𝑓 is “differentiable” at 𝑐, if the limit  

lim
ℎ→0

𝑓(𝑐+ℎ)−𝑓(𝑐)

ℎ
 exists. 

 

Remark: When we say a limit exists, we mean (a) the left-hand limit exists, (b) the right-

hand limit exists, (c) the two limits are the same. 

 

Notations and a Terminology 

Usually, we denote the limit lim
ℎ→0

𝑓(𝑐+ℎ)−𝑓(𝑐)

ℎ
 by the symbols 𝑓′(𝑐),

𝑑𝑓

𝑑𝑥
|
𝑥=𝑐

,
𝑑𝑓(𝑥)

𝑑𝑥
|
𝑥=𝑐

 

We call this number 𝑓′(𝑐) the “derivative” of the function 𝑓 at the point 𝑐. 

 

(The last one is used when we want to emphasize the fact that 𝑥 is the variable of the 

function 𝑓) 

We also want to give a notation to the “quotient” 
𝑓(𝑐+ℎ)−𝑓(𝑐)

ℎ
 by writing it as 

Δ𝑓

Δ𝑥
|
𝑥=𝑐

 or  

Δ𝑓(𝑥)

Δ𝑥
|
𝑥=𝑐

 . 

(The last one is used when we want to emphasize the fact that 𝑥 is the variable of the 

function 𝑓) 

 

 



Geometric Meaning of Derivative 

In short, 𝑓′(𝑐) is the “slope of the tangent line to the curve 𝑦 = 𝑓(𝑥) at the point 𝑐.” 

 

Remark: It should be emphasized that (a) only straight lines have slopes, (b) tangent line is a 

straight line, (c) therefore it has a slope, given by 𝑓′(𝑐). 

 

Question: What is a tangent line? Intuitively speaking, it is a line that “touches” the curve 

𝑦 = 𝑓(𝑥) at 𝑐. This intuition has many drawbacks, as we will outline in the next lectures. 

 

Example 

Find 𝑓′(0) for the function 

 

𝑓(𝑥) = {
𝑥2 sin (

1

𝑥
) , 𝑥 ≠ 0

0, 𝑥 = 0

 

 

Answer: 

(Step 1) Consider the quotient 

Δ𝑓

Δ𝑥
|
𝑥=0

=
ℎ2 sin (

1
ℎ
) − 0

ℎ
= ℎ sin (

1

ℎ
) 

(Step 2) Let ℎ → 0 and obtain 

lim
ℎ→0

Δ𝑓

Δ𝑥
|
𝑥=0

= lim
ℎ→0

ℎ sin (
1

ℎ
) = 0 

by the Sandwich (or Squeeze) Theorem. 

 

Conclusion: 𝑓′(0) = 0. 

 

Differentiable implies Continuous 

Previously we mentioned that if a function 𝑓 satisfies 

(a) lim
𝑥→𝑐+

𝑓(𝑥) = 𝐿1 

(b) lim
𝑥→𝑐−

𝑓(𝑥) = 𝐿2 

(c) 𝐿1 = 𝐿2 

(d) 𝑓(𝑐) = 𝐿1 = 𝐿_2 

 

Then we say “𝑓 is continuous at 𝑐”. 

 

Notations: We can write (a) – (d) in a more compact form, i.e. lim
𝑥→𝑐

𝑓(𝑥) = 𝑓(𝑐), meaning (a) 

left-limit exists, right-limit exists, these two limits are the same & (b) both of them are equal 



to the number 𝑓(𝑐). 

 

There is a beautiful result saying that a function which is differentiable (i.e. has no corner) at 

𝑐 must be continuous at 𝑐. 

 

Remark: What the above says is that “𝑓 is differentiable at 𝑐 ⟹ 𝑓 is continuous at 𝑐” 

This is the same as saying “𝑓 is not continuous at 𝑐 ⟹ 𝑓 is not differentiable at 𝑐” 

 

Proof: 

Goal: To show “𝑓 is continuous at 𝑐”, i.e. lim
𝑥→𝑐

𝑓(𝑥) = 𝑓(𝑐). 

Trick: Rewrite this in the form lim
𝑥→𝑐
[𝑓(𝑥) − 𝑓(𝑐)] = 0 

 

(Step 1) Consider 𝑓(𝑥) − 𝑓(𝑐) =
𝑓(𝑥)−𝑓(𝑐)

𝑥−𝑐
⋅ (𝑥 − 𝑐). 

(Step 2) We know that the limit lim
𝑥→𝑐

𝑓(𝑥)−𝑓(𝑐)

𝑥−𝑐
 exists, the limit lim

𝑥→𝑐
(𝑥 − 𝑐) = 0 exists. 

Hence by the product of limits, we get 

 

lim
𝑥→𝑐

𝑓(𝑥) − 𝑓(𝑐) exists and is equal to the “product” of the limit lim
𝑥→𝑐

𝑓(𝑥)−𝑓(𝑐)

𝑥−𝑐
 and the limit  

lim
𝑥→𝑐
(𝑥 − 𝑐) 

 

(Step 3) Now we know that the limit lim
𝑥→𝑐

𝑓(𝑥)−𝑓(𝑐)

𝑥−𝑐
 is a finite number, the limit  

lim
𝑥→𝑐
(𝑥 − 𝑐) is zero. Hence their product is  

 

lim
𝑥→𝑐

𝑓(𝑥) − 𝑓(𝑐)

𝑥 − 𝑐
⋅ lim
𝑥→𝑐
(𝑥 − 𝑐) = 0. 

Conclusion: lim
𝑥→𝑐
[𝑓(𝑥) − 𝑓(𝑐)] = lim

𝑥→𝑐

𝑓(𝑥)−𝑓(𝑐)

𝑥−𝑐
⋅ lim
𝑥→𝑐
(𝑥 − 𝑐) = 0. 

Therefore 𝑓  is continuous at 𝑐. 

 

 

Arithmetic of Derivatives 

We have  

(a) (𝛼𝑓 ± 𝛽𝑔)′(𝑐) = 𝛼𝑓′(𝑐) ± 𝛽𝑔′(𝑐), where 𝛼, 𝛽 are constants. 

(b) (𝑓 ⋅ 𝑔)′(𝑐) = 𝑓(𝑐)𝑔′(𝑐) + 𝑓′(𝑐)𝑔(𝑐). 

(c) (
𝑓

𝑔
)
′
(c) =

𝑓′(𝑐)𝑔(𝑐)−𝑓(𝑐)𝑔′(𝑐)

[𝑔(𝑐)]2
, provided 𝑔(𝑐) ≠ 0. 


