MATH 1010A/K 2017-18
 University Mathematics
 Tutorial Notes VIII
 Ng Hoi Dong

Taylor's Theorem

Let f be a function which is $n+1$-times differentiable on some interval I with some $c \in I$.
Let $x \in I$, then there exist some ξ between x and c, such that

$$
f(x)=\underbrace{f(c)+f^{\prime}(c)(x-c)+\frac{f^{\prime \prime}(c)}{2}(x-c)^{2}+\frac{f^{\prime \prime \prime}(c)}{3!}(x-c)+\cdots+\frac{f^{(n)}(c)}{n!}(x-c)^{n}}_{n \text {-th Taylor's Polynomial of } f \text { centered at } c}+\underbrace{\frac{f^{(n+1)}(\xi)}{(n+1)!}(x-c)^{n+1}}_{\text {Reminder term }} .
$$

Question
(Q1a) Let $f(x)=\frac{1}{\sqrt{1-x}}$ and $p(x)$ be the Taylor Polynomial of degree 4 centered at $x=0$.
(i) Find $p(x)$.
(ii) Show for any $|x| \leq \frac{1}{4}$, we have

$$
|f(x)-p(x)| \leq \frac{7}{3456 \sqrt{3}}
$$

(Q1b) Find Taylor Polynomial of $g(x)=\sin ^{-1} x$ of degree 9 centered at $x=0$.
(Q2) Show that for all $x>0$,

$$
1+\frac{x}{2}-\frac{x^{2}}{8} \leq \sqrt{1+x} \leq 1+\frac{x}{2}
$$

(Q3) By considering appropriate Taylor series expansions, evaluate the limits below:
(a) $\lim _{x \rightarrow 0}\left(\frac{1}{x}-\frac{1}{e^{x}-1}\right)$
(b) $\lim _{x \rightarrow 0} \frac{2 \sin x-\sin 2 x}{x-\sin x}$
(c) $\lim _{x \rightarrow 0} \frac{\sin ^{3} x}{x(1-\cos x)}$
(d) $\lim _{x \rightarrow 0} \frac{\ln \left(1+x^{2}\right)}{x \sin x}$
(Q4) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be an infinitely differentiable function satisfying

$$
\left\{\begin{array}{l}
f^{\prime}(x)=f(x)+2 e^{-x} \\
f(0)=1
\end{array}\right.
$$

(a) Use $f^{(n-1)(x)}$ and e^{-x} to represent $f^{(n)}(x)$.
(b) Find $f^{(n)}(0)$.
(c) Write down the Taylor's Series of f centered at $x=0$.
(A1a) Note that

$$
\begin{array}{rlrl}
f(x) & =\frac{1}{\sqrt{1-x}}, & f(0) & =1, \\
f^{\prime}(x) & =\frac{1}{2(1-x)^{\frac{3}{2}}}, & f^{\prime}(0) & =\frac{1}{2}, \\
f^{\prime \prime}(x) & =\frac{3}{4(1-x)^{\frac{5}{2}}}, & f^{\prime \prime}(0)=\frac{3}{4}, \\
f^{\prime \prime \prime}(x) & =\frac{15}{8(1-x)^{\frac{7}{2}}}, & f^{\prime \prime \prime}(0)=\frac{15}{8}, \\
f^{(4)}(x) & =\frac{105}{16(1-x)^{\frac{9}{2}}}, & f^{(4)}(0)=\frac{105}{16}, \\
f^{(5)}(x) & =\frac{945}{32(1-x)^{\frac{11}{2}}} . &
\end{array}
$$

Then $p(x)=1+\frac{1}{2} x+\frac{3}{8} x^{2}+\frac{5}{16} x^{3}+\frac{35}{128} x^{4}$.
If $|x| \leq \frac{1}{4}$, then by Taylor's Theorem, there exist some ξ between x and 0 , such that

$$
f(x)-p(x)=\frac{f^{(5)}(\xi)}{5!} x^{5}
$$

Note that $\xi \in\left(-\frac{1}{4}, \frac{1}{4}\right)$, we have

$$
\left|f^{(5)}(\xi)\right|=\frac{945}{32|1-x|^{\frac{11}{2}}} \leq \frac{3^{3} \cdot 5 \cdot 7}{2^{5}\left(\frac{3}{4}\right)^{5+\frac{1}{2}}}=\frac{2^{6} \cdot 5 \cdot 7}{3^{2} \sqrt{3}}
$$

Hence, we have

$$
|f(x)-p(x)|=\frac{\left|f^{(5)}(x)\right|}{5!}|x|^{5} \leq \frac{2^{6} \cdot 5 \cdot 7}{2^{3} \cdot 3^{3} \cdot 5 \sqrt{3}} \cdot \frac{1}{2^{10}}=\frac{7}{2^{7} \cdot 3^{3} \sqrt{3}}=\frac{7}{3456 \sqrt{3}}
$$

(A1b) Note $g(x)=\sin ^{-1} x$, then $g(0)=0$ and $g^{\prime}(x)=\frac{1}{\sqrt{1-x^{2}}}$, by (a), the Taylor Polynomial of degree 4 of $g^{\prime}(x)=f\left(x^{2}\right)$ centered at $x=0$ is

$$
p\left(x^{2}\right)=1+\frac{1}{2} x^{2}+\frac{3}{8} x^{4}+\frac{5}{16} x^{6}+\frac{35}{128} x^{8}
$$

Then we know $g^{\prime \prime}(0)=g^{(4)}(0)=g^{(6)}(0)=g^{(8)}(0)=0$ and
$g^{\prime}(0)=1, g^{(3)}(0)=1, g^{(5)}(0)=9, g^{(7)}(0)=225, g^{(9)}(0)=11025$.
Hence, the required polynomial is

$$
x+\frac{1}{6} x^{3}+\frac{1}{15} x^{5}+\frac{5}{112} x^{7}+\frac{35}{1152} x^{9}
$$

(A2) Let $f(x)=\sqrt{1+x}$, then f is infinitely differentiable, $f(0)=1$, and

$$
\begin{aligned}
f^{\prime}(x) & =\frac{1}{2(1+x)^{\frac{3}{2}}}, & f^{\prime}(0)=\frac{1}{2} \\
f^{\prime \prime}(x) & =-\frac{3}{4(1+x)^{\frac{5}{2}}}, & f^{\prime \prime}(0)=-\frac{3}{4} \\
f^{\prime \prime \prime}(x) & =\frac{15}{8(1+x)^{\frac{7}{2}}} . &
\end{aligned}
$$

Hence, the Taylor's Polynomial of degree 2 of f centered at 0 is

$$
p_{2}(x)=1+\frac{x}{2}-\frac{x^{2}}{8}
$$

Hence, the Taylor's Polynomial of degree 1 of f centered at 0 is

$$
p_{1}(x)=1+\frac{x}{2} .
$$

Let $x>0$. By Taylor's Theorem, there exist some $\xi_{1}, \xi_{2} \in(0, x)$, such that

$$
\begin{aligned}
f(x)-p_{1}(x) & =f^{\prime \prime}\left(\xi_{1}\right) x^{2} \\
& =-\frac{3 x^{2}}{4(1+\xi)^{\frac{5}{2}}} \\
& \leq 0
\end{aligned}
$$

$f(x)-p_{2}(x)=f^{\prime \prime \prime}\left(\xi_{2}\right) x^{3}$

$$
=\frac{15 x^{3}}{8\left(1+\xi_{2}\right)^{\frac{7}{2}}}
$$

$$
\geq 0
$$

That is, $p_{2}(x) \leq f(x) \leq p_{1}(x)$, i.e. $1+\frac{x}{2}-\frac{x^{2}}{8} \leq \sqrt{1+x} \leq 1+\frac{x}{2}$.
(A3) Remark: Try to compute the Taylor's Polynomial and I will skip it.
(a) Note that $\frac{1}{x}-\frac{1}{e^{x}-1}=\frac{e^{x}-x-1}{x\left(e^{x}-1\right)}$, by your exercise,
the Taylor's Polynomial of degree 2 of $e^{x}-x-1$ centered at 0 is $\frac{x^{2}}{2}$,
and the Taylor's Polynomial of degree 2 of $x\left(e^{x}-1\right)$ centered at 0 is x^{2}.
Let $x \in \mathbb{R}$. By Taylor's Theorem, there exist some ξ, η between 0 and x, such that

$$
e^{x}-x-1=\frac{x^{2}}{2}+\frac{e^{\xi}}{6} x^{3}, \quad x\left(e^{x}-1\right)=x^{2}+\frac{e^{\eta}(\eta+3)}{6} x^{3} .
$$

Then we have

$$
\lim _{x \rightarrow 0}\left(\frac{1}{x}-\frac{1}{e^{x}-1}\right)=\lim _{x \rightarrow 0} \frac{e^{x}-x-1}{x\left(e^{x}-1\right)}=\lim _{x \rightarrow 0} \frac{\frac{x^{2}}{2}+\frac{e^{\xi}}{6} x^{3}}{x^{2}+\frac{e^{\eta}(\eta+3)}{6} x^{3}}=\lim _{x \rightarrow 0} \frac{\frac{1}{2}+\frac{e^{\xi}}{6} x}{1+\frac{e^{\eta}(\eta+3)}{6} x}=\frac{1}{2}
$$

(b) The Taylor's Polynomial of degree 3 of $2 \sin x-\sin 2 x$ centered at 0 is x^{3}, and the Taylor's Polynomial of degree 3 of $x-\sin x$ centered at 0 is $\frac{x^{3}}{6}$.
Let $x \in \mathbb{R}$. By Taylor's Theorem, there exist some number C, D, note that C, D depends on x and bounded near 0 , such that

$$
2 \sin x-\sin 2 x=x^{3}+C x^{4}, \quad x-\sin x=\frac{x^{3}}{6}+D x^{4}
$$

Then we have

$$
\lim _{x \rightarrow 0} \frac{2 \sin x-\sin 2 x}{x-\sin x}=\lim _{x \rightarrow 0} \frac{x^{3}+C x^{4}}{\frac{x^{3}}{6}+D x^{4}}=\lim _{x \rightarrow 0} \frac{1+C x}{\frac{1}{6}+D x}=6
$$

(c) The Taylor's Polynomial of degree 1 of $\sin x$ centered at 0 is x and The Taylor's Polynomial of degree 2 of $1-\cos x$ centered at 0 is $\frac{x^{2}}{2}$ and Let $x \in \mathbb{R}$. By Taylor's Theorem, there exist some number C, D, note that C, D depends on x and bounded near 0 , such that

$$
\sin x=x+C x^{2}, \quad 1-\cos x=\frac{x^{2}}{2}+D x^{3}
$$

Then we have

$$
\lim _{x \rightarrow 0} \frac{\sin ^{3} x}{x(1-\cos x)}=\lim _{x \rightarrow 0} \frac{\left(x+C x^{2}\right)^{3}}{x\left(\frac{x^{2}}{2}+D x^{3}\right)}=\lim _{x \rightarrow 0} \frac{(1+C x)^{3}}{\frac{1}{2}+D x}=2 .
$$

(d) The Taylor's Polynomial of degree 2 of $\ln \left(1+x^{2}\right)$ centered at 0 is $2 x^{2}$ and the Taylor's Polynomial of degree 1 of $\sin x$ centered at 0 is x.
Let $x \in \mathbb{R}$. By Taylor's Theorem, there exist some number C, D, note that C, D depends on x and bounded near 0 , such that

$$
\ln \left(1+x^{2}\right)=2 x^{2}+C x^{3}, \quad \sin x=x+D x^{2}
$$

Then we have

$$
\lim _{x \rightarrow 0} \frac{2 x^{2}+C x^{3}}{x\left(x+D x^{2}\right)}=\lim _{x \rightarrow 0} \frac{2+C x}{1+D x}=2
$$

(A4) Note that $\frac{d^{n}}{d^{n} x} e^{-x}=\left\{\begin{array}{ll}e^{-x}, & \text { if } n \text { is even } \\ -e^{-x}, & \text { if } n \text { is odd }\end{array}\right.$.
Hence, $f^{(n)}(x)=f^{(n-1)}(x)+2 \frac{d^{n-1}}{d^{n-1} x} e^{-x}= \begin{cases}f^{(n-1)}(x)-2 e^{-x}, & \text { if } n \text { is even } \\ f^{(n-1)}(x)+2 e^{-x}, & \text { if } n \text { is odd }\end{cases}$
Let $P(n)$ be the statement that $f^{(n)}(0)=\left\{\begin{array}{ll}1, & \text { if } n \text { is even } \\ 3, & \text { if } n \text { is odd }\end{array}\right.$.
By assumption, $P(0)$ is true.
Assume $P(k)$ is true for some $k \in \mathbb{N}$,
(Case 1) Suppose k is even, that is $f^{(k)}(0)=1$, hence $f^{(k+1)}(0)=f^{(k)}(0)+2 e^{-0}=1+2=3$.
(Case 2) Suppose k is odd, that is $f^{(k)}(0)=3$, hence $f^{(k+1)}(0)=f^{(k)}(0)-2 e^{-0}=3-2=1$.
So $P(k+1)$ is true.
By First Principal of Mathematical Induction, we know $f^{(n)}(0)=\left\{\begin{array}{ll}1, & \text { if } n \text { is even } \\ 3, & \text { if } n \text { is odd }\end{array}\right.$.
The Taylor's Series of f centered at $x=0$ is

$$
1+3 x+\frac{1}{2} x^{2}+\frac{3}{3!} x^{3}+\frac{1}{4!} x^{4}+\ldots+\frac{1}{(2 n)!} x^{2 n}+\frac{3}{(2 n+1)!} x^{2 n+1}+\ldots
$$

OR

$$
\sum_{n=0}^{\infty}\left(\frac{1}{(2 n)!} x^{2 n}+\frac{3}{(2 n+1)!} x^{2 n+1}\right)
$$

OR

$$
\sum_{n=0}^{\infty} \frac{1+(-1)^{n+1}}{n!} x^{n}
$$

