MATH 1010A/K 2017-18
 University Mathematics
 Tutorial Notes IV
 Ng Hoi Dong

Question

(Q1) Define $f: \mathbb{R} \rightarrow \mathbb{R}$ by $f(x)=\left\{\begin{array}{ll}x^{2} \sin \frac{1}{x} & , x \neq 0 \\ 0 & , x=0\end{array}\right.$.
Show f is differentiable at $x=0$ and hence find $f^{\prime}(x)$ for any $x \in \mathbb{R}$. Is f^{\prime} continuous at $x=0$?
(Q2) Define $f: \mathbb{R} \rightarrow \mathbb{R}$ by $f(x)=\left\{\begin{array}{ll}x^{2} \tan ^{-1} \frac{1}{x} & , x \neq 0 \\ 0 & , x=0\end{array}\right.$.
Show f is differentiable at $x=0$ and hence find $f^{\prime}(x)$ for any $x \in \mathbb{R}$. Is f^{\prime} continuous at $x=0$?
(Q3) Define $f: \mathbb{R} \rightarrow \mathbb{R}$ by $f(x)=\left\{\begin{array}{ll}\sin x & , x<\pi \\ a x+b & , x \geq \pi\end{array}\right.$.
Find $a, b \in \mathbb{R}$ such that f is differentiable on \mathbb{R}.
(Q4) For all $m=0,1,2,3, \ldots$, show the Chebyshev Polynomial $T_{m}: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
T_{m}(x)=\frac{1}{2^{m-1}} \cos \left(m \cos ^{-1} x\right)
$$

satisfy $\left(1-x^{2}\right) T_{m}^{\prime \prime}(x)-x T_{m}^{\prime}(x)+m^{2} T_{m}(x)=0$.
(Q5) Find $\frac{d y}{d x}$ if
(a) $x e^{x y}=1$,
(b) $\cos \left(\frac{y}{x}\right)=\ln (x+y)$,
(c) $y=x^{\ln x}$.
(Q6) Prove that for any $x>0$, we have

$$
\frac{x}{1+x}<\ln (1+x)<x .
$$

And hence, show for any $x>0$, we have

$$
\frac{1}{1+x}<\ln \left(1+\frac{1}{x}\right)<\frac{1}{x}
$$

(Q7) Let $f(x)$ be a function defined on $[0, \infty)$ such that
(i) $f(0)=0$,
(ii) f is continuous on $[0, \infty)$
(iii) f is differentiable on $(0, \infty)$ and f^{\prime} is monotonic increasing on $(0, \infty)$.

Prove that

$$
f(a+b) \geq f(a)+f(b)
$$

for any $0 \leq a \leq b \leq a+b$.
(A1) By Sandwich Theorem in the special tutorial notes, we have $\lim _{h \rightarrow 0} h \sin \frac{1}{h}=0$. Then

$$
\lim _{h \rightarrow 0} \frac{f(0+h)-f(0)}{h}=\lim _{h \rightarrow 0} \frac{h^{2} \sin \frac{1}{h}-0}{h}=\lim _{h \rightarrow 0} h \sin \frac{1}{h}=0 .
$$

Hence, f differentiable at 0 with $f^{\prime}(0)=0$. Using product rule, we have

$$
f^{\prime}(x)=\left\{\begin{array}{ll}
2 x \sin \frac{1}{x}-\cos \frac{1}{x} & , x \neq 0 \\
0 & , x=0
\end{array} .\right.
$$

Since $\lim _{x \rightarrow 0} 2 x \sin \frac{1}{x}$ exists $(=0)$ and $\lim _{x \rightarrow 0} \cos \frac{1}{x}$ does NOT exist (Why?),
we must have $\lim _{x \rightarrow 0} f^{\prime}(x)$ does NOT exist,
otherwise, we have $\lim _{x \rightarrow 0} \cos \frac{1}{x}=\lim _{x \rightarrow 0}\left(2 x \sin \frac{1}{x}-f^{\prime}(x)\right)$ exists in \mathbb{R}. (Which is a contradiction) Therefore, f^{\prime} is NOT continuous at 0 .
(A2) Note that $-\frac{\pi}{2} \leq \tan ^{-1} \frac{1}{x} \leq \frac{\pi}{2}$ for any $x \neq 0$.
By Sandwich Theorem (try to write the proof down!), we have $\lim _{h \rightarrow 0} h \tan ^{-1} \frac{1}{h}=0$. Then

$$
\lim _{h \rightarrow 0} \frac{f(0+h)-f(0)}{h}=\lim _{h \rightarrow 0} \frac{h^{2} \tan ^{-1} \frac{1}{h}-0}{h}=\lim _{h \rightarrow 0} h \tan ^{-1} \frac{1}{h}=0 .
$$

Hence, f differentiable at 0 with $f^{\prime}(0)=0$.
Note if $y=\tan ^{-1} x$, then

$$
\begin{aligned}
\tan y & =x \\
\left(\sec ^{2} y\right) \frac{d y}{d x} & =1 \\
\frac{d}{d x} \tan ^{-1} x=\frac{d y}{d x} & =\cos ^{2} y=\cos ^{2}\left(\tan ^{-1} x\right)=\frac{1}{1+x^{2}} .
\end{aligned}
$$

Note that the last step is obtained by drawing a triangle. Using product rule, we have

$$
f^{\prime}(x)= \begin{cases}2 x \tan ^{-1} \frac{1}{x}+\frac{x^{2}}{1+x^{2}} & , x \neq 0 \\ 0 & , x=0\end{cases}
$$

Note $\lim _{x \rightarrow 0} f^{\prime}(x)=\lim _{x \rightarrow 0}\left(2 x \tan ^{-1} \frac{1}{x}+\frac{x^{2}}{1+x^{2}}\right)=0+0=0=f^{\prime}(0)$,
so f^{\prime} continuous at 0 .
(A3) When $x<\pi, f(x)=\sin x$ which is a differentiable function.
When $x>\pi, f(x)=a x+b$ which is a differentiable function.
It suffice to find $a, b \in \mathbb{R}$ such that f is differentiable at $x=\pi$.
Suppose such differentiable f exists, f must be continuous at $x=0$, that is

$$
\begin{aligned}
\lim _{x \rightarrow \pi^{-}} f(x) & =f(\pi)=\lim _{x \rightarrow \pi^{+}} f(x) \\
0=\lim _{x \rightarrow \pi^{-}} \sin x & =a \pi+b=\lim _{x \rightarrow \pi^{+}}(a x+b)=a \pi+b
\end{aligned}
$$

Hence, we have $b=-a \pi$, that is $f(\pi)=a \pi+b=0$.
Since f is differentiable at $x=0, \lim _{h \rightarrow 0} \frac{f(\pi+h)-f(\pi)}{h}$ exists, that is

$$
\begin{gathered}
\lim _{h \rightarrow 0^{-}} \frac{f(\pi+h)-f(\pi)}{h}=\lim _{h \rightarrow 0^{+}} \frac{f(\pi+h)-f(\pi)}{h} \\
\lim _{h \rightarrow 0^{-}} \frac{\sin h}{h}=\lim _{h \rightarrow 0^{-}} \frac{\sin (\pi+h)}{h}=\lim _{h \rightarrow 0^{+}} \frac{a(\pi+h)+b}{h}=\lim _{h \rightarrow 0^{+}} \frac{a h}{h} .
\end{gathered}
$$

Hence, $a=1$ and $b=-\pi$.
(A4) Note if $y=\cos ^{-1} x$, then

$$
\begin{aligned}
\cos y & =x \\
-\sin y \frac{d y}{d x} & =1 \\
\frac{d}{d x} \cos ^{-1} x=\frac{d y}{d x} & =-\csc y=-\csc \left(\cos ^{-1} x\right)=\frac{-1}{\sqrt{1-x^{2}}}
\end{aligned}
$$

Note that the last step is obtained by drawing a triangle. Then

$$
\begin{aligned}
T_{m}(x) & =\frac{1}{2^{m-1}} \cos \left(m \cos ^{-1} x\right) \\
T_{m}^{\prime}(x) & =\frac{-1}{2^{m-1}} \sin \left(m \cos ^{-1} x\right)\left(\frac{-m}{\sqrt{1-x^{2}}}\right) \\
& =\frac{m}{2^{m-1}} \frac{\sin \left(m \cos ^{-1} x\right)}{\sqrt{1-x^{2}}}, \\
T_{m}^{\prime \prime}(x) & =\frac{m}{2^{m-1}} \frac{\sqrt{1-x^{2}} \cos \left(m \cos ^{-1} x\right)\left(\frac{-m}{\sqrt{1-x^{2}}}\right)-\frac{-2 x}{2 \sqrt{1-x^{2}}} \sin \left(m \cos ^{-1} x\right)}{1-x^{2}} \\
& =\frac{m}{2^{m-1}} \frac{x \frac{\sin \left(m \cos ^{-1} x\right)}{\sqrt{1-x^{2}}}}{1-x^{2}}-\frac{1}{2^{m-1}} \frac{m^{2} \cos \left(m \cos ^{-1} x\right)}{1-x^{2}} .
\end{aligned}
$$

Hence, $\left(1-x^{2}\right) T_{m}^{\prime \prime}(x)-x T_{m}^{\prime}(x)+m^{2} T_{m}(x)=0$.
(A5) Using product rule and chain rule,
(a) we have

$$
\begin{aligned}
x e^{x y} & =1 \\
x \frac{d}{d x} e^{x y}+e^{x y} \frac{d}{d x} x & =\frac{d}{d x} 1 \\
x e^{x y}\left(x \frac{d}{d x} y+y \frac{d}{d x} x\right)+e^{x y} & =0 \\
x e^{x y}\left(x \frac{d y}{d x}+y\right)+e^{x y} & =0 \\
\frac{d y}{d x} & =-\frac{1+x y}{x^{2}} .
\end{aligned}
$$

(b) we have

$$
\begin{aligned}
\cos \left(\frac{y}{x}\right) & =\ln (x+y) \\
-\sin \left(\frac{y}{x}\right) \frac{d}{d x}\left(\frac{y}{x}\right) & =\frac{1}{x+y} \frac{d}{d x}(x+y) \\
-\sin \left(\frac{y}{x}\right) \frac{x \frac{d}{d x} y-y \frac{d}{d x} x}{x^{2}} & =\frac{1}{x+y}\left(1+\frac{d y}{d x}\right) \\
-\sin \left(\frac{y}{x}\right) \frac{x \frac{d y}{d x}-y}{x^{2}} & =\frac{1}{x+y}\left(1+\frac{d y}{d x}\right) \\
y(x+y) \sin \left(\frac{y}{x}\right)-x(x+y) \sin \left(\frac{y}{x}\right) \frac{d y}{d x} & =x^{2}+x^{2} \frac{d y}{d x} \\
\frac{d y}{d x} & =\frac{y(x+y) \sin \left(\frac{y}{x}\right)-x^{2}}{x(x+y) \sin \left(\frac{y}{x}\right)+x^{2}} .
\end{aligned}
$$

(c) we have

$$
\begin{aligned}
y & =x^{\ln x} \\
\ln y & =\ln \left(x^{\ln x}\right)=(\ln x)^{2} \\
\frac{1}{y} \frac{d y}{d x} & =2(\ln x)\left(\frac{1}{x}\right) \\
\frac{d y}{d x} & =\frac{2 y \ln x}{x}=2 x^{(\ln x)-1} \ln x
\end{aligned}
$$

(A6) Define $f:(0, \infty) \rightarrow \mathbb{R}$ by $f(x)=\ln x$ for any $x>0$.
Fixed any $x>0$, note f is continuous on $[1, x+1]$ and differentiable on $(1, x+1)$.
By (Lagrange's) Mean Value Theorem, there exists some ξ with $1<\xi<x+1$, such that

$$
\frac{\ln (x+1)}{x}=\frac{f(x+1)-f(1)}{x+1-1}=f^{\prime}(\xi)=\frac{1}{\xi}
$$

Note $0<1<\xi<x+1$, so

$$
\begin{aligned}
& 1>\frac{1}{\xi}>\frac{1}{x+1} \\
& 1>\frac{\ln (x+1)}{x}>\frac{1}{x+1} \\
& x>\ln (x+1)>\frac{x}{x+1} \text { Since } x>0
\end{aligned}
$$

Therefore, $\frac{x}{1+x}<\ln (1+x)<x$ for any $x>0$.
Fixed any $x>0$, note $y=\frac{1}{x}>0$, hence

$$
\begin{gathered}
\frac{y}{1+y}<\ln (1+y)<y \\
\text { that is } \frac{1}{1+x}=\frac{\frac{1}{x}}{1+\frac{1}{x}}<\ln \left(1+\frac{1}{x}\right)<\frac{1}{x} .
\end{gathered}
$$

Therefore, $\frac{1}{1+x}<\ln \left(1+\frac{1}{x}\right)<\frac{1}{x}$ for any $x>0$.
(A7) Note that the case that $a=0$ is trival since $f(0)=0$.

Now fixed any a, b with $0<a \leq b<a+b$,
since f is continuous on $[0, a]$ and f is differentiable on $(0, a)$,
by (Lagrange's) Mean Value Theorem, there exists some η with $0<\eta<a$, such that

$$
(*) \quad \frac{f(a)}{a}=\frac{f(a)-f(0)}{a-0}=f^{\prime}(\eta) \underset{\text { increasing }}{\stackrel{f^{\prime} \text { is }}{\leq}} f^{\prime}(a)
$$

Since f is continuous on $[b, a+b]$ and f is differentiable on $(b, a+b)$,
by (Lagrange's) Mean Value Theorem, there exists some ξ with $b<\xi<a+b$, such that

$$
\frac{f(a+b)-f(b)}{a}=\frac{f(a+b)-f(b)}{a+b-b}=f^{\prime}(\xi) \underset{\text { increasing }}{\stackrel{f^{\prime} \text { is }}{\geq}} f^{\prime}(a) \stackrel{(*)}{\geq} \frac{f(a)}{a}
$$

Since $a>0$, we have $f(a+b) \geq f(a)+f(b)$.
Therefore, $f(a+b) \geq f(a)+f(b)$ for any $0 \leq a \leq b \leq a+b$.

