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Question

(Q1) Define f ∶ ℝ → ℝ by f (x) =
⎧

⎪

⎨

⎪

⎩

x2 sin 1
x

, x ≠ 0

0 , x = 0
.

Show f is differentiable at x = 0 and hence find f ′(x) for any x ∈ ℝ. Is f ′ continuous at x = 0?

(Q2) Define f ∶ ℝ → ℝ by f (x) =
⎧

⎪

⎨

⎪

⎩

x2 tan−1 1
x

, x ≠ 0

0 , x = 0
.

Show f is differentiable at x = 0 and hence find f ′(x) for any x ∈ ℝ. Is f ′ continuous at x = 0?

(Q3) Define f ∶ ℝ → ℝ by f (x) =

{

sin x , x < �
ax + b , x ≥ �

.

Find a, b ∈ ℝ such that f is differentiable on ℝ.

(Q4) For all m = 0, 1, 2, 3, .., show the Chebyshev Polynomial Tm ∶ ℝ → ℝ by

Tm(x) =
1

2m−1
cos

(

m cos−1 x
)

satisfy
(

1 − x2
)

T ′′
m (x) − xT

′
m(x) + m

2Tm(x) = 0.

(Q5) Find dy
dx

if

(a) xexy = 1,

(b) cos
(

y
x

)

= ln (x + y),

(c) y = xln x.

(Q6) Prove that for any x > 0, we have

x
1 + x

< ln
(

1 + x
)

< x.

And hence, show for any x > 0, we have

1
1 + x

< ln
(

1 + 1
x

)

< 1
x
.

(Q7) Let f (x) be a function defined on [0,∞) such that

(i) f (0) = 0,
(ii) f is continuous on [0,∞)

(iii) f is differentiable on (0,∞) and f ′ is monotonic increasing on (0,∞).

Prove that

f (a + b) ≥ f (a) + f (b)

for any 0 ≤ a ≤ b ≤ a + b.
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Answer

(A1) By Sandwich Theorem in the special tutorial notes, we have lim
ℎ→0

ℎ sin 1
ℎ
= 0. Then

lim
ℎ→0

f (0 + ℎ) − f (0)
ℎ

= lim
ℎ→0

ℎ2 sin 1
ℎ − 0

ℎ
= lim
ℎ→0

ℎ sin 1
ℎ
= 0.

Hence, f differentiable at 0 with f ′(0) = 0. Using product rule, we have

f ′(x) =

{

2x sin 1
x − cos 1

x , x ≠ 0
0 , x = 0

.

Since lim
x→0

2x sin 1
x
exists (= 0) and lim

x→0
cos 1

x
does NOT exist (Why?),

we must have lim
x→0

f ′(x) does NOT exist,

otherwise, we have lim
x→0

cos 1
x
= lim
x→0

(

2x sin 1
x
− f ′(x)

)

exists in ℝ. (Which is a contradiction)

Therefore, f ′ is NOT continuous at 0.

(A2) Note that −�
2
≤ tan−1 1

x
≤ �

2
for any x ≠ 0.

By Sandwich Theorem (try to write the proof down!), we have lim
ℎ→0

ℎ tan−1 1
ℎ
= 0. Then

lim
ℎ→0

f (0 + ℎ) − f (0)
ℎ

= lim
ℎ→0

ℎ2 tan−1 1
ℎ − 0

ℎ
= lim
ℎ→0

ℎ tan−1 1
ℎ
= 0.

Hence, f differentiable at 0 with f ′(0) = 0.

Note if y = tan−1 x, then

tan y = x
(

sec2 y
) dy
dx

= 1

d
dx

tan−1 x =
dy
dx

= cos2 y = cos2
(

tan−1 x
)

= 1
1 + x2

.

Note that the last step is obtained by drawing a triangle. Using product rule, we have

f ′(x) =

⎧

⎪

⎨

⎪

⎩

2x tan−1 1
x
+ x2

1 + x2
, x ≠ 0

0 , x = 0
.

Note lim
x→0

f ′(x) = lim
x→0

(

2x tan−1 1
x
+ x2

1 + x2

)

= 0 + 0 = 0 = f ′(0),

so f ′ continuous at 0.

(A3) When x < �, f (x) = sin x which is a differentiable function.

When x > �, f (x) = ax + b which is a differentiable function.

It suffice to find a, b ∈ ℝ such that f is differentiable at x = �.

Suppose such differentiable f exists, f must be continuous at x = 0, that is

lim
x→�−

f (x) = f (�) = lim
x→�+

f (x)

0 = lim
x→�−

sin x = a� + b = lim
x→�+

(ax + b) = a� + b.
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Hence, we have b = −a�, that is f (�) = a� + b = 0.

Since f is differentiable at x = 0, lim
ℎ→0

f (� + ℎ) − f (�)
ℎ

exists, that is

lim
ℎ→0−

f (� + ℎ) − f (�)
ℎ

= lim
ℎ→0+

f (� + ℎ) − f (�)
ℎ

lim
ℎ→0−

sinℎ
ℎ

= lim
ℎ→0−

sin(� + ℎ)
ℎ

= lim
ℎ→0+

a(� + ℎ) + b
ℎ

= lim
ℎ→0+

aℎ
ℎ
.

Hence, a = 1 and b = −�.

(A4) Note if y = cos−1 x, then

cos y = x

− sin y
dy
dx

= 1

d
dx

cos−1 x =
dy
dx

= −csc y = −csc
(

cos−1 x
)

= −1
√

1 − x2

Note that the last step is obtained by drawing a triangle. Then

Tm(x) =
1

2m−1
cos

(

m cos−1 x
)

,

T ′
m(x) =

−1
2m−1

sin
(

m cos−1 x
)

(

−m
√

1 − x2

)

= m
2m−1

sin
(

m cos−1 x
)

√

1 − x2
,

T ′′
m (x) =

m
2m−1

√

1 − x2 cos
(

m cos−1 x
)

(

−m
√

1−x2

)

− −2x
2
√

1−x2
sin

(

m cos−1 x
)

1 − x2

= m
2m−1

x
sin

(

m cos−1 x
)

√

1−x2

1 − x2
− 1

2m−1

m2 cos
(

m cos−1 x
)

1 − x2
.

Hence,
(

1 − x2
)

T ′′
m (x) − xT

′
m(x) + m

2Tm(x) = 0.

(A5) Using product rule and chain rule,

(a) we have

xexy = 1

x d
dx
exy + exy d

dx
x = d

dx
1

xexy
(

x d
dx
y + y d

dx
x
)

+ exy = 0

xexy
(

x
dy
dx

+ y
)

+ exy = 0

dy
dx

= −
1 + xy
x2

.
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(b) we have

cos
(

y
x

)

= ln (x + y)

− sin
(

y
x

)

d
dx

(

y
x

)

= 1
x + y

d
dx

(x + y)

− sin
(

y
x

) x d
dxy − y

d
dxx

x2
= 1
x + y

(

1 +
dy
dx

)

− sin
(

y
x

) x dydx − y

x2
= 1
x + y

(

1 +
dy
dx

)

y(x + y) sin
(

y
x

)

− x(x + y) sin
(

y
x

)

dy
dx

= x2 + x2
dy
dx

dy
dx

=
y(x + y) sin

(

y
x

)

− x2

x(x + y) sin
(

y
x

)

+ x2
.

(c) we have

y = xln x

ln y = ln
(

xln x
)

=
(

ln x
)2

1
y
dy
dx

= 2
(

ln x
)

(

1
x

)

dy
dx

=
2y ln x
x

= 2x(ln x)−1 ln x

(A6) Define f ∶ (0,∞) → ℝ by f (x) = ln x for any x > 0.

Fixed any x > 0, note f is continuous on
[

1, x + 1
]

and differentiable on
(

1, x + 1
)

.

By (Lagrange’s) Mean Value Theorem, there exists some � with 1 < � < x + 1, such that

ln
(

x + 1
)

x
=
f (x + 1) − f (1)

x + 1 − 1
= f ′(�) = 1

�
.

Note 0 < 1 < � < x + 1, so

1 >1
�
> 1
x + 1

1 >
ln
(

x + 1
)

x
> 1
x + 1

x > ln
(

x + 1
)

> x
x + 1

Since x > 0.

Therefore, x
1 + x

< ln
(

1 + x
)

< x for any x > 0.

Fixed any x > 0, note y = 1
x
> 0, hence

y
1 + y

< ln
(

1 + y
)

< y

that is 1
1 + x

=
1
x

1 + 1
x

< ln
(

1 + 1
x

)

< 1
x
.

Therefore, 1
1 + x

< ln
(

1 + 1
x

)

< 1
x
for any x > 0.

(A7) Note that the case that a = 0 is trival since f (0) = 0.
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Now fixed any a, b with 0 < a ≤ b < a + b,

since f is continuous on [0, a] and f is differentiable on (0, a),

by (Lagrange’s) Mean Value Theorem, there exists some � with 0 < � < a, such that

(∗)
f (a)
a

=
f (a) − f (0)

a − 0
= f ′(�)

f ′ is
≤

increasing
f ′(a)

Since f is continuous on [b, a + b] and f is differentiable on (b, a + b),

by (Lagrange’s) Mean Value Theorem, there exists some � with b < � < a + b, such that

f (a + b) − f (b)
a

=
f (a + b) − f (b)

a + b − b
= f ′(�)

f ′ is
≥

increasing
f ′(a)

(∗)
≥ f (a)

a
.

Since a > 0, we have f (a + b) ≥ f (a) + f (b).

Therefore, f (a + b) ≥ f (a) + f (b) for any 0 ≤ a ≤ b ≤ a + b.
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