MATH 1010A/K 2017-18
 University Mathematics
 Tutorial Notes II
 Ng Hoi Dong

Question

(Q1) A sequence $\left\{x_{n}\right\}$ is defined by $x_{0}=1, x_{1}=2$ and $x_{n}=\frac{x_{n-1}+x_{n-2}}{2}$ for $n \geq 2$.
(a) Write down the values of $x_{2}-x_{1}, x_{3}-x_{2}$ and $x_{4}-x_{3}$.
(b) For $n=1,2,3, \ldots$, guess an expression for $x_{n}-x_{n-1}$ in terms of n and prove it.
(c) Hence find $\lim _{n \rightarrow \infty} x_{n}$.
(Q2) Let $p>0$ and $p \neq 1$,
$\left\{a_{n}\right\}$ is a sequence of positive numbers defined by $\left\{\begin{array}{l}a_{0}=2 \\ a_{n}=\frac{1}{\sqrt[p]{n}}+\frac{1}{p} a_{n-1}, n=1,2,3, \ldots\end{array}\right.$
(a) Prove that $\lim _{n \rightarrow \infty} a_{n}=0$ if the limit exists.
(b) Using (a), or otherwise,
(i) if $2=a_{0}<a_{1}<a_{2}<\ldots$, show that $\lim _{n \rightarrow \infty} a_{n}$ does not exist.
(ii) if $a_{k-1} \geq a_{k}$ for some $k>1$, show that $a_{n-1} \geq a_{n}$ for $n \geq k$ and deduce that $\lim _{n \rightarrow \infty} a_{n}=0$.
(c) Using (a),(b), or otherwise,
(i) if $0<p<1$, show that $\lim _{n \rightarrow \infty} a_{n}$ does not exist.
(ii) if $p \geq 2$, show that $\lim _{n \rightarrow \infty} a_{n}=0$.
(d) Using (a),(b), or otherwise,
(i) Suppose $1<p<2$. Prove by mathematical induction that $a_{n}<\frac{2}{p-1}$ for $n \geq 0$.
(ii) Suppose $1<p<2$. Prove that $\lim _{n \rightarrow \infty} a_{n}=0$.
(Q3) Let $f(x)=\sqrt{\frac{x+|x|}{x+2}}, g(x)=\sqrt{x^{2}-|x|-2}$.
Find the maximal domain of $f, g($ in $\mathbb{R})$.
(Q4) Find values of a and b such that

$$
f(x)= \begin{cases}a x+2 b, & x \leq 0 \\ x^{2}+3 a-b, & 0<x \leq 2 \\ 4 x-2 b, & x>2\end{cases}
$$

is continuous at every $x \in \mathbb{R}$.
(A1) Let $x_{0}=1, x_{1}=2$ and $x_{n}=\frac{x_{n-1}+x_{n-2}}{2}$ for $n \geq 2$.
(a) $x_{2}=\frac{3}{2}, x_{3}=\frac{7}{4}, x_{4}=\frac{13}{8}$. Then $x_{2}-x_{1}=-\frac{1}{2}, x_{3}-x_{2}=\frac{1}{4}, x_{4}-x_{3}=-\frac{1}{8}$.
(b) Guess $x_{n}-x_{n-1}=(-1)^{n-1} \frac{1}{2^{n-1}}$.

Let $P(n)$ be the statement that " $x_{n}-x_{n-1}=(-1)^{n-1} \frac{1}{2^{n-1}}$ ".
Note that $P(1)$ is true since $x_{1}-x_{0}=1=(-1)^{0} \frac{1}{2^{0}}$.
Let $k \in \mathbb{Z}$ and $k \geq 2$, assume $P(k)$ is true, i.e. $x_{k}-x_{k-1}=(-1)^{k-1} \frac{1}{2^{k-1}}$.
Consider $n=k+1$,

$$
\begin{aligned}
x_{k+1}-x_{k} & =\frac{x_{k}+x_{k_{1}}}{2}-x_{k} \\
& =-\frac{x_{k}-x_{k-1}}{2} \\
& =\frac{(-1)^{k}}{2^{k}} .
\end{aligned}
$$

so $P(k+1)$ is true.
By principal of mathematical induction, $P(n)$ is true for any $n=1,2,3, \ldots$, i.e. $x_{n}-x_{n-1}=(-1)^{n-1} \frac{1}{2^{n-1}}$ for any $n=1,2,3, \ldots$.
(c) Note that $x_{n}-x_{0}=\sum_{i=1}^{n}\left(x_{i}-x_{i-1}\right)=\sum_{i=1}^{n}(-1)^{i-1} \frac{1}{2^{i-1}}$

$$
\text { and } \sum_{i=0}^{\infty}(-1)^{i-1} \frac{1}{2^{i-1}}=\frac{1}{1-\left(-\frac{1}{2}\right)}=\frac{2}{3} .
$$

Therefore, $\lim _{n \rightarrow \infty} x_{n}$ exist and $\lim _{n \rightarrow \infty} x_{n}=x_{0}+\frac{2}{3}=\frac{5}{3}$.
(A2) Let p, a_{n} are defined as the question.
(a) If the limit exists, by the definition of a_{n},

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \frac{1}{\sqrt[p]{n}}+\frac{1}{p} \lim _{n \rightarrow \infty} a_{n-1}=\frac{1}{p} \lim _{n \rightarrow \infty} a_{n} \\
& \lim _{n \rightarrow \infty} a_{n}=0 \quad \text { since } p \neq 1
\end{aligned}
$$

(b) Using (a),
(i) Suppose it were true that $\lim _{n \rightarrow \infty} a_{n}$ exists,

Since $\left\{a_{n}\right\}$ is increasing sequence, so (Why?)

$$
2=a_{0} \leq a_{n} \leq \lim _{n \rightarrow \infty} a_{n}=0 \text { for any } n=0,1,2, \ldots
$$

Contradiction arises, hence $\lim _{n \rightarrow \infty} a_{n}$ does not exist.
(ii) Let $P(n)$ be the statement that " $a_{k+n-1} \geq a_{k+n}$ ".

Since $a_{k-1} \geq a_{k}, P(0)$ is true.
Let l be a nonnegative integer, assume $P(l)$ is true, i.e. $a_{k+l-1} \geq a_{k+l}$, then

$$
a_{k+l}-a_{k+l+1}=\left(\frac{1}{\sqrt[p]{k+l}}-\frac{1}{\sqrt[p]{k+l+1}}\right)+\frac{1}{p}\left(a_{k+l-1}-a_{k+l}\right) \geq 0
$$

Hence, $a_{k+l} \geq a_{k+l+1}$, i.e. $P(l+1)$ is true.

By the principal of mathematical induction, $P(n)$ is true for any $n=0,1,2, \ldots$.
Since $\left\{a_{k+n-1}\right\}_{n=1}^{\infty}$ is monotone decreasing and bounded below (by 0),
by Monotone Convergent Theorem, $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} a_{n+k-1}$ exist.
Apply (a), $\lim _{n \rightarrow \infty} a_{n}=0$.
(c) Using (a),(b),
(i) For any $n=1,2,3, \ldots$, since $0<p<1$, we have

$$
a_{n}=\frac{1}{\sqrt[p]{n}}+\frac{1}{p} a_{n-1}>\frac{1}{p} a_{n-1}>a_{n-1}
$$

Hence, $2=a_{0}<a_{1}<a_{2}<\ldots$, by (b)(i), $\lim _{n \rightarrow \infty} a_{n}$ does not exist.
(ii) Since $p \geq 2$, we have

$$
a_{1}=\frac{1}{\sqrt[p]{1}}+\frac{1}{p} a_{0}=1+\frac{2}{p} \leq 2=a_{0}
$$

By (b)(ii), $\lim _{n \rightarrow \infty} a_{n}=0$.
(d) Using (a),(b),
(i) Suppose $1<p<2$. Let $P(n)$ be the statement that " $a_{n}<\frac{2}{p-1}$ ".

Note that $a_{0}=2<\frac{2}{p-1}$ since $p-1<1$, hence $P(0)$ is true.
Let k be a nonnegative integer, assume $P(k)$ is true, i.e. $a_{k}<\frac{2}{p-1}$, then

$$
\begin{aligned}
a_{k+1} & =\frac{1}{\sqrt[p]{n+1}}+\frac{1}{p} a_{k}<1+\frac{1}{p} \frac{2}{p-1} \\
& =\frac{p^{2}-p+2}{p(p-1)}=\frac{(p-2)(p-1)+2 p}{p(p-1)} \\
& =\frac{p-2}{p}+\frac{2 p}{p(p-1)}<\frac{2 p}{p(p-1)} \\
& =\frac{2}{p-1} .
\end{aligned}
$$

Hence $P(k+1)$ is true, by the principal of mathematical induction,
$P(n)$ is true for any $n=0,1,2, \ldots$, i.e. $a_{n}<\frac{2}{p-1}$ for any $n=0,1,2, \ldots$.
(ii) By (d)(i), $\left\{a_{n}\right\}$ bounded above.

Suppose it were true that $\left\{a_{n}\right\}$ is strictly increasing, by (b)(i), $\lim _{n \rightarrow \infty} a_{n}$ does not exist, which is a contradiction with Monotone Convergent Theorem,
hence $\left\{a_{n}\right\}$ is not strictly increasing, by (b)(ii), $\lim _{n \rightarrow \infty} a_{n}=0$.
(A3) For $f(x)=\sqrt{\frac{x+|x|}{x+2}}$, since the denominator cannot be 0 .
Hence, -2 NOT belongs to the domain of f.
Note $\frac{x+|x|}{x+2}=\left\{\begin{array}{ll}\frac{x+x}{x+2}=\frac{2 x}{x+2} & \text { if } x \geq 0 \\ \frac{x-x}{x+2}=0 & \text { if } x<0, x \neq-2\end{array}\right.$.
Note $\frac{2 x}{x+2}$ always non-negative for any $x \geq 0$.
So f well-defined for any $x \geq 0$. (The expression inside square root need to be non-negative.)
Maximum domain of f is $\mathbb{R} \backslash\{-2\}$.

For $g(x)=\sqrt{x^{2}-|x|-2}$, Note $x^{2}-|x|-2=\left\{\begin{array}{ll}x^{2}-x-2=(x-2)(x+1) & \text { if } x \geq 0 \\ x^{2}+x-2=(x+2)(x-1) & \text { if } x<0\end{array}\right.$.

x	$x<-2$	$x=-2$	$-2<x<0$	$x=0$	$0<x<2$	$x=2$	$x>2$
$x^{2}-\|x\|-2$	+	0	-	-	-	0	+

Since the expression inside the square need to be non-negative,
the number between -2 and 2 (not include ± 2) NOT belongs to the domain of g.
Hence, the maximal domain of g is $\mathbb{R} \backslash(-2,2)$. (Or you can write $(-\infty,-2] \cup[2,+\infty)$)
(A4) Note that f is a polynomial when $x<0,0<x<2$ or $x>2$.
Hence f is obviously continuous on $\mathbb{R} \backslash\{0,2\}$.
Suppose f is continuous in \mathbb{R} everywhere.
Then $\lim _{x \rightarrow 0} f(x), \lim _{x \rightarrow 2} f(x)$ exist and $\lim _{x \rightarrow 0} f(x)=f(0), \lim _{x \rightarrow 2} f(x)=f(2)$.
That means $\lim _{x \rightarrow 0^{+}} f(x)=f(0)=\lim _{x \rightarrow 0^{-}} f(x), \lim _{x \rightarrow 2^{+}} f(x)=f(2)=\lim _{x \rightarrow 2^{-}} f(x)$. Note that

$$
\begin{aligned}
\lim _{x \rightarrow 0^{-}} f(x) & =\lim _{x \rightarrow 0^{-}} a x+2 b=2 b \\
\lim _{x \rightarrow 0^{+}} f(x) & =\lim _{x \rightarrow 0^{+}} x^{2}+3 a-b=3 a-b \\
\lim _{x \rightarrow 2^{-}} f(x) & =\lim _{x \rightarrow 2^{-}} x^{2}+3 a-b=4+3 a-b \\
\lim _{x \rightarrow 2^{+}} f(x) & =\lim _{x \rightarrow 2^{+}} 4 x-2 b=8-2 b .
\end{aligned}
$$

Therefore, we have $\left\{\begin{array}{ll}2 b & =3 a-b \\ 4+3 a-b & =8-2 b\end{array}\right.$. Hence, $a=b=1$.

