MATH 1010A/K 2017-18
 University Mathematics
 Notes of $\lim _{\substack{x \rightarrow \infty \\ \text { Ng Hoi Dong }}} e^{-x} x^{k}, \lim _{x \rightarrow 0} x \sin \frac{1}{x}$

Caution This notes need to use some basic knowlegde of calculus.
Theorem For all $x \geq 0, e^{x} \geq 1+x+\frac{x^{2}}{2!} \ldots+\frac{x^{k}}{k!}$ for any $k \in \mathbb{N} \cup\{0\}$.
Proof We use induction on k.
Let $P(k)$ be the statement that "For all $x \geq 0, e^{x} \geq 1+x+\frac{x^{2}}{2!} \ldots+\frac{x^{k}}{k!}$."
Note $P(0)$ is true since $e^{x} \geq 1$ for any $x \geq 0$.
Assume $P(i)$ is true for some $i \in \mathbb{N} \cup\{0\}$. That is

$$
\begin{aligned}
e^{t} & \geq 1+t+\frac{t^{2}}{2!}+\frac{t^{i}}{i!} & \forall t \geq 0 \\
\int_{0}^{x} e^{t} d t & \geq \int_{0}^{x}\left(1+t+\frac{t^{2}}{2!} \ldots+\frac{t^{i}}{i!}\right) d t & \forall x \geq 0 \\
e^{x}-1 & \geq x+\frac{x}{2}+\frac{x}{3!}+\ldots+\frac{x^{i+1}}{(i+1)!} & \forall x \geq 0 \\
e^{x} & \geq 1+x+\frac{x}{2}+\frac{x}{3!}+\ldots+\frac{x^{i+1}}{(i+1)!} & \forall x \geq 0
\end{aligned}
$$

Hence, $P(i+1)$ is true.
By the first principal of Mathematical Induction, $P(k)$ is true for any $k \in \mathbb{N} \cup\{0\}$.
Corollary $\lim _{x \rightarrow \infty} \frac{x^{k}}{e^{x}}=0$ for any $k \in \mathbb{N} \cup\{0\}$.
Proof By last theorem, we have $e^{x} \geq 1+x+\frac{x^{2}}{2!} \ldots+\frac{x^{k+1}}{(k+1)!} \geq \frac{x^{k+1}}{(k+1)!}>0$ for any $x>0$.
That is, $0 \leq \frac{x^{k}}{e^{x}} \leq \frac{x^{k}(k+1)!}{x^{k+1}}=\frac{(k+1)!}{x}$. Note $\lim _{x \rightarrow \infty} 0=0=\lim _{x \rightarrow \infty} \frac{(k+1)!}{x}$.
By Sandwich Theorem, $\lim _{x \rightarrow \infty} \frac{x^{k}}{e^{x}}$ exists and $\lim _{x \rightarrow \infty} \frac{x^{k}}{e^{x}}=0$.
Corollary $\lim _{x \rightarrow \infty} \frac{(\ln x)^{k}}{x}=0$ for any $k \in \mathbb{N} \cup\{0\}$.
Proof $\lim _{x \rightarrow \infty} \frac{(\ln x)^{k}}{x} \stackrel{y=\ln x}{=} \lim _{y \rightarrow \infty} \frac{y^{k}}{e^{y}}=0$.
Theorem Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function, and $c \in \mathbb{R} \cup\{ \pm \infty\}$.
If $\lim _{x \rightarrow c}|f(x)|=0$, then $\lim _{x \rightarrow c} f(x)$ exists and equals to 0 .
Proof Note $-|w| \leq w \leq|w|$ for any $w \in \mathbb{R}$.
Hence, $-|f(x)| \leq f(x) \leq|f(x)|$ for any $x \in \mathbb{R}$.
Note $\lim _{x \rightarrow c}-|f(x)|=0=\lim _{x \rightarrow c}|f(x)|$.
By Sandwich Theorem, $\lim _{x \rightarrow c} f(x)$ exists and equals to 0 .
Theorem $\lim _{x \rightarrow 0} x \sin \frac{1}{x}=0$.

Proof We prove it from one-sided limit.
For $x>0$, we have $-x \leq x \sin \frac{1}{x} \leq x$.
Note $\lim _{x \rightarrow 0^{+}}-x=0=\lim _{x \rightarrow 0^{+}} x$, by Sandwich Theorem, we have $\lim _{x \rightarrow 0^{+}} x \sin \frac{1}{x}$ exists and equals to 0 .
For $x<0$, we have $x \leq x \sin \frac{1}{x} \leq-x$.
Note $\lim _{x \rightarrow 0^{-}} x=0=\lim _{x \rightarrow 0^{-}}-x$, by Sandwich Theorem, we have $\lim _{x \rightarrow 0^{-}} x \sin \frac{1}{x}$ exists and equals to 0 .
Hence, $\lim _{x \rightarrow 0^{-}} x \sin \frac{1}{x}=0=\lim _{x \rightarrow 0^{+}} x \sin \frac{1}{x}$.
Therefore, $\lim _{x \rightarrow 0} x \sin \frac{1}{x}$ exists and equals to 0 .

