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Lecture 19: Fundamental theorem of Calculus

Charles Li

1 Inequalities of indefinite integral

Proposition 1.1. Suppose f(x) ≤ g(x) on [a, b], then∫ b

a

f(x)dx ≤
∫ b

a

g(x)dx.

�

Corollary 1.1. ∫ b

a

f(x)dx ≤
∫ b

a

|f(x)|dx.

�

Proof. Let g(x) = |f(x)| in the proposition.

Corollary 1.2. ∣∣∣∣∫ f(x)dx

∣∣∣∣ ≤ ∫ |f(x)|dx.

�

Proof.
−|f(x)| ≤ f(x) ≤ |f(x)|.

So

−
∫ b

a

|f(x)|dx ≤
∫ b

a

f(x)dx ≤
∫ b

a

|f(x)|dx.

The result follows.

Corollary 1.3. Let M (resp. m) be the maximum (resp. minimum)
value of f(x) on [a, b] Then

m(b− a) ≤
∫ b

a

f(x)dx ≤M(b− a).

�
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Proof. For x ∈ [a, b], m ≤ f(x) ≤M . Hence∫ b

a

mdx ≤
∫ b

a

f(x)dx ≤
∫ b

a

Mdx.

Proposition 1.2 (Mean value theorem for definite integral). Sup-
pose f(x) is a continuous function on [a, b]. Then there exists c ∈
[a, b] such that

f(c) =
1

b− a

∫ b

a

f(x)dx.

�

Proof. By the previous corollary (use the same notation)

m ≤ 1

b− a

∫ b

a

f(x)dx ≤M.

Suppose f(x1) = m and f(x2) = M , x1, x2 ∈ [a, b]. By the inter-
mediate value theorem, there exists c between x1 and x2 (hence in
[a, b]) such that

f(c) =
1

b− a

∫ b

a

f(x).

2 Fundamental theorem of Calculus

Theorem 2.1 (The Fundamental Theorem of Calculus). If the
function f(x) is continuous on the interval a ≤ x ≤ b, then∫ b

a

f(x) dx = F (b)− F (a) (1)

where F (x) is any antiderivative of f(x) on a ≤ x ≤ b. �

Proof. The proof will be given later.

Example 2.1. Evaluate

∫ 2

1

x dx.
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Answer. The function F (x) = 1
2
x2 is an antiderivative of f(x) = x;

thus, from (1)∫ 2

1

x dx =
1

2
x2

∣∣∣∣2
1

=
1

2
(2)2 − 1

2
(1)2 = 2− 1

2
=

3

2
.

�
The Relationship between Definite and Indefinite Integrals
Let F be any antiderivative of the integrand on [a, b], and let C be
any constant; then∫ b

a

f(x) dx = [f(x) + C]ba = [F (b) +C]− [F (a) +C] = F (b)−F (a).

Thus, for purpose of evaluating a definite integral we can omit
the constraint of integration in∫ b

a

f(x) dx = [F (x) + C]ba

and express (1) as ∫ b

a

f(x) dx =

∫
f(x) dx

∣∣∣∣b
a

.

Example 2.2. Compute ∫ 9

1

√
x dx.

Answer.∫ 9

1

√
x dx =

∫
x1/2 dx

∣∣∣∣9
1

=
2

3
x3/2

∣∣∣∣9
1

=
2

3
(27− 1) =

52

3
.

�

3 Fundamental theorem of Calculus (another form)

Theorem 3.1. Suppose f(x) is a continuous function on [a, b] and
x ∈ [a, b]. Let

F (x) =

∫ x

a

f(t)dt.
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Then F (x) is the anti-derivative of f(x), i.e.

F ′(x) = f(x).

�

Proof. By Proposition 1.2

F (x + h)− F (x)

h
=

1

h

∫ x+h

x

f(x) = f(ch)

for some ch between x and x + h, then h→ 0, ch → x. Therefore

lim
h→0

F (x + h)− F (x)

h
= f(x).

Proof of the fundamental theorem of calculus. By the previous the-
orem F (x) =

∫ x

a
f(t)dt is the antiderivative of f(x) and F (a) = 0.

Then ∫ b

a

f(x)dt = F (b) = F (b)− F (a).

�

Example 3.1. Compute the following

1.
d

dx

∫ x

2

sin(t)dx.

2.
d

dx

∫ 3

x

e−t
3

dt.

3.
d

dx

∫ x3

0

√
2 + sin tdt.

4.
d

dx

∫ x3

x2

dt

ln t
for x > 0.

Answer.

1. By theorem 3.1,
d

dx

∫ x

2

sin(t)dx = sin(x).
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2.

∫ 3

x

e−t
3

dt = −
∫ x

3

e−t
3

dt. By theorem 3.1,

d

dt

∫ 3

x

e−t
3

dt = − d

dt

∫ x

3

e−t
3

dt = −e−x3

.

3. We can use the chain rule. Let u = x3, y =

∫ x3

0

√
2 + sin tdt =∫ u

1

√
2 + sin tdt.

dy

dx
=

dy

du

du

dt
=
√

2 + sinu(3x2) = 3x2
√

2 + sin(x3).

4. Let a = 1. ∫ x3

x2

1

ln t
dt =

∫ x3

a

dt

ln t
dt−

∫ x2

a

dt

ln t
dt.

Let u = x3, y =

∫ x3

a

dt

ln t
dt =

∫ u

a

dt

ln t
.

dy

dx
=

dy

du

du

dx
=

1

lnu
(3x2) =

x2

lnx
.

Similarly let u = x2, y =

∫ x2

a

dt

ln t
.

dy

dx
=

dy

du

du

dt
=

1

lnu
(2x) =

x

lnx
.

Therefore
d

dx

∫ x3

x2

dt

ln t
dt =

x2

lnx
− x

lnx
.

�
Generally, let u(x), v(x) be differentiable function and f(x) a

continuous function, then

d

dx

∫ v(x)

u(x)

f(t)dt = f(v(x))v′(x)− f(u(x))u′(x).
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Let c be a constant∫ v(x)

u(x)

f(t)dt =

∫ v(x)

c

f(t)dt−
∫ u(x)

c

f(t)dt.

Let F (v) =
∫ v

c
f(t)dt. Then F ′(v) = f(v). Let v = v(x), by the

chain rule

d

dx

∫ v(x)

c

f(t)dt =
d

dx
F (v(x)) = F ′(v(x))v′(x).

Similarly Let G(u) =
∫ u

c
f(t)dt. Then G′(u) = f(u). Let u = u(x),

by the chain rule

d

dx

∫ u(x)

c

f(t)dt =
d

dx
F (u(x)) = F ′(u(x))u′(x).

Remark: Don’t use the above formula directly in the tests or exam
because you have show your steps. Follow the above procedure and
write down your steps clearly.

4 Definite integral of piece functions

Example 4.1. Evaluate

∫ 3

0

f(x) dx if

f(x) =

{
x2, x < 2

3x− 2, x ≥ 2

Answer.
We can integrate from 0 to 2 and from 2 to 3 separately and add

the results. This yields∫ 3

0

f(x) dx =

∫ 2

0

f(x) dx +

∫ 3

2

f(x) dx =

∫ 2

0

x2 dx +

∫ 3

2

(3x− 2) dx

=
x3

3

∣∣∣∣2
0

+

[
3x2

2
− 2x

]3
2

=

(
8

3
− 0

)
+

(
15

2
− 2

)
=

49

6
.

�
If f is a continuous function on the interval [a, b], then we define

the total area between the curve y = f(x) and the interval [a, b] to
be

total area =

∫ b

a

|f(x)| dx.
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Example 4.2. Find the total area between the curve y = 1−x2 and
the x-axis over the interval [0, 2].

Answer. The are is given by∫ 2

0

|1− x2| dx =

∫ 1

0

(1− x2)dx +

∫ 2

1

−(1− x2)dx

=

[
x− x3

3

]1
0

−
[
x− x3

3

]2
1

=
2

3
−
(
−4

3

)
= 2.
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Example 4.3. Let f(x) = x(x− 1)(x− 2). Compute∫ 4

0

|f(x)|dx.

Answer. For 0 ≤ x ≤ 1, f(x) ≥ 0. So |f(x)| = f(x).
For 1 ≤ x ≤ 2, f(x) ≤ 0. So |f(x)| = −f(x).
For x ≥ 2, f(x) ≥ 0. So |f(x)| = f(x).
Therefore∫ 4

0

|f(x)|dx =

∫ 1

0

f(x)dx +

∫ 2

1

(−f(x))dx +

∫ 4

2

f(x)dx.

=

[
x4

4
− x3 + x2

]1
0

−
[
x4

4
− x3 + x2

]2
1

+

[
x4

4
− x3 + x2

]4
2

=
33

2
.

�

5 Area between curves

I suppose you have already learned this in the secondary
school. Should be skipped.

Theorem 5.1. Let f(x) and g(x) be continuous functions defined
on [a, b] where f(x) ≥ g(x) for all x in [a, b]. The area of the region
bounded by the curves y = f(x), y = g(x) and the lines x = a and
x = b is ∫ b

a

(
f(x)− g(x)

)
dx.

�

Proof. The area between f(x) and g(x) is obtained by subtracting
the area under g from the area under f . Thus the area is∫ b

a

f(x)dx−
∫ b

a

g(x)dx =

∫ b

a

(f(x)− g(x))dx.

Example 5.1. Find the area of the region enclosed by y = x2+x−5
and y = 3x− 2.
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.....

f(x)

.

g(x)

.
a

.
b

.

x

.

y

.....

f(x)

.

g(x)

.
a

.
b

.

x

.

y

Answer. The region whose area we seek is completely bounded by
these two functions; they seem to intersect at x = −1 and x = 3.
To check, set x2 + x− 5 = 3x− 2 and solve for x:

x2 + x− 5 = 3x− 2

(x2 + x− 5)− (3x− 2) = 0

x2 − 2x− 3 = 0

(x− 3)(x + 1) = 0

x = −1, 3.

The area is∫ 3

−1

(
3x− 2− (x2 + x− 5)

)
dx =

∫ 3

−1
(−x2 + 2x + 3) dx

=

(
−1

3
x3 + x2 + 3x

)∣∣∣∣3
−1

= −1

3
(27) + 9 + 9−

(
1

3
+ 1− 3

)
= 10

2

3
.
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.....

y = x2 + x − 5

.y = 3x − 2.

−2

.

−1

.

1

.

2

.

3

.

4

.

5

.

10

.

15

.

x

.

y

�

Example 5.2. Find the area bounded by

y = f(x) = x, y = g(x) =
2

x + 1
and y = h(x) = 2x + 2.

Answer. Area is∫ 0

−2
(h(x)− f(x))dx +

∫ 1

0

(g(x)− f(x))dx

=

∫ 0

−2
(2x + 2− x) +

∫ 1

0

(
2

x + 1
− x)dx

=

[
x2

2
+ 2x

]0
−2

+

[
2 ln |x + 1| − x2

2

]1
0

= 2 + (2 ln 2− 1

2
) =

3

2
+ ln 4.

�
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