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Lecture 19: Fundamental theorem of Calculus
Charles Li

1 Inequalities of indefinite integral

Proposition 1.1. Suppose f(x) < g(z) on |a,b], then
b b
/ f(x)dx S/ g(z)dz.

Corollary 1.1.

[ 1w < [

Proof. Let g(z) = |f(x)| in the proposition. O

Corollary 1.2.

\ [ 1w < [isar
|
Proof.
@) < £() < 1))
So
e s [ swars [l
The result follows. O

Corollary 1.3. Let M (resp. m) be the maximum (resp. minimum,)
value of f(x) on [a,b] Then

m(b—a) < / F@)dz < M(b—a).



Proof. For = € [a,b], m < f(x) < M. Hence
b b b
/ mdx < / flz)dz < / Mdz.

Proposition 1.2 (Mean value theorem for definite integral). Sup-
pose f(x) is a continuous function on [a,b]. Then there exists ¢ €
[a,b] such that

O

fe)= 5= [ ra)ds

Proof. By the previous corollary (use the same notation)

1 b
mgm/a f(x)deM

Suppose f(x1) = m and f(z3) = M, x1,22 € [a,b]. By the inter-
mediate value theorem, there exists ¢ between z; and x5 (hence in

[a, b]) such that

b
10 =52 [ f@)

2 Fundamental theorem of Calculus

Theorem 2.1 (The Fundamental Theorem of Calculus). If the
function f(x) is continuous on the interval a < x < b, then

| #a)in=Fo) - Fa )

where F(z) is any antiderivative of f(x) ona < x <b. [

Proof. The proof will be given later. ]

2
Example 2.1. Evaluate/ rdr.
1



Answer. The function F(z) = 122

52° is an antiderivative of f(z) = x;
thus, from (1)

The Relationship between Definite and Indefinite Integrals
Let F' be any antiderivative of the integrand on [a, b], and let C be
any constant; then

b
/ f(z)da = [f(2) + Cl; = [F(b) + C] = [F(a) + C] = F(b) — F(a).

Thus, for purpose of evaluating a definite integral we can omit
the constraint of integration in

/ﬂ@m:ww+mz

and express (1) a

b b
/ f(x)de = /f(:z)dx .
Example 2.2. Compute
9
Ve dr.
1
Answer.
9 9 9
2 2
/ \/Ed:c:/q:l/zd:c Zad? :—(27—1):5—.
1 1 .3 3

3 Fundamental theorem of Calculus (another form)

Theorem 3.1. Suppose f(z) is a continuous function on [a,b] and
x € [a,b]. Let

F(z) = / " Ft.

3



Then F(z) is the anti-derivative of f(z), i.e.
F'(z) = f(z).

Proof. By Proposition 1.2

Fz+h)—F(z) 1

z+h
s [ i =)

for some ¢;, between x and x + h, then h — 0, ¢;, — x. Therefore

lim F(z+h)— F(x)
h—0 h

= (@)
O]

Proof of the fundamental theorem of calculus. By the previous the-
orem F(x) = [7 f(t)dt is the antiderivative of f(z) and F(a) = 0.
Then

/f@ﬁ:F@:F@—F@.

Example 3.1. Compute the following

0 ), sin(t)dzx.

d [ 5
. — “rdt.
2 . xe

d [
3. — V2 + sin tdt.

dz J,
d [* dt
4. %/ﬁ mforx>0.
Answer.

1. By theorem 3.1, i/ sin(t)dx = sin(z).
dzx [,



3 3
2. / e tdt

—/ e~ dt. By theorem 3.1,
3

d [* s d [*

dt J, T dt s

_ 43 _ .3
e Vdt = —e .

3
3. We can use the chain rule. Let u = 23, y = / V2 +sintdt =
0
/ V2 + sintdt.
1

dy dyd
d_y _ d_yd_? = V2 + sinu(32?) = 32°\/2 + sin(z3).
T U
4. Let a = 1.

3 3 2
x 1 x x
R R L
L2 Int . Int o Int

3
Todt “odt
Letu:1:3,y:/ —dt =
. Int

~ Int’
dy g1
de  dudr Inu Inz’

2
Todt
Similarly let u = 22, y = / —.
. Int
dy dydu 1

Y (22) = —
dr  dudt  Inu"

“lng
Therefore ,
d [ dt a? x
dr J,» Int lnz Inz’

|
Generally, let u(z), v(x) be differentiable function and f(z) a
continuous function, then

d v(z)
L syt = Flo@)! () - Flu(@)i @)



Let ¢ be a constant

v(z) v(z) u(x)
[ rtoin = / F(t)dt — / F(b)dt.

Let F(v) = [’ f(t)dt. Then F'(v) = f(v). Let v = v(z), by the
chain rule

d [ d T

| 10i= LFe@) = Fo@ve.
Similarly Let G(u) = [ f(t)dt. Then G'(u) = f(u). Let u = u(x),
by the chain rule

d (@) d

o] W= () = ) @)

Remark: Don’t use the above formula directly in the tests or exam
because you have show your steps. Follow the above procedure and
write down your steps clearly.

4 Definite integral of piece functions

3
Example 4.1. Evaluate/ f(z)dx if
0

f(:c):{m2’ r <2

3x — 2, x> 2

Answer.
We can integrate from 0 to 2 and from 2 to 3 separately and add
the results. This yields

/ng(x)dx = /:f(x)doc+/23f(x)dx—/Ozxzdx—i—/:(Bx—Q)dx

3|2 2 3
x 3z 8 15 49
- +{——2x] :(——0)+<——2):—.
0 2 ) 3 2 6
|
If f is a continuous function on the interval [a, b], then we define

3
the total area between the curve y = f(x) and the interval [a, b] to
be

b
total area :/ |f(z)] dz.



N—_————————

Example 4.2. Find the total area between the curve y = 1 — 22 and
the x-axis over the interval [0, 2].

AY

yv=1-ux

~
L

Answer. The are is given by

2 1 2
/ 11— 2% dr = / (1—$2)dx+/ —(1 — 2*)dzx
0 0 1



Example 4.3. Let f(z) = z(x — 1)(z — 2). Compute

/ £ (@)ldz.

Answer. For 0 <z <1, f(z) > 0. So |f(z)| = f(x).
For 1 <z <2, f(x) <0. So |f(z)|=—f(x).

For x > 2, f(z) > 0. So |f(x)| = f(x).

Therefore

/]f |dm—/f d:z:+/ daz+/f

2
+ o e L + 5
=T a?] - — 2% a2? — a2 ==
4 . L4 .4 , 2

5 Area between curves

I suppose you have already learned this in the secondary
school. Should be skipped.

Theorem 5.1. Let f(x) and g(x) be continuous functions defined
on [a,b] where f(z) > g(x) for all x in [a,b]. The area of the region
bounded by the curves y = f(x), y = g(x) and the lines x = a and
r=~>1is

| (@) = g(@) da:
|

Proof. The area between f(x) and g(z) is obtained by subtracting
the area under g from the area under f. Thus the area is

/abf(x)dx - /abg(x)d:z: = /ab(f(l') _ g(x))da.

Example 5.1. Find the area of the region enclosed by y = 2> +x—5
and y = 3x — 2.

]



Answer. The region whose area we seek is completely bounded by
these two functions; they seem to intersect at © = —1 and = = 3.
To check, set 22 + 2 — 5 = 3z — 2 and solve for z:
P +r—5=3r—-2
(2> +2—5)— (Br—2)=0

22 —2x—-3=0
(x=3)(x+1)=0
r=—-1, 3.

The area is

/3 (3z—2— (2> + 2 —5)) dx:/g(—x2+293+3) dx

1
= (——I3 + 2+ BI)
3 -1

1 1
=——(21)+9+9—(s+1-3
;20 +9+ (3+ )

3

—102
= 103
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Example 5.2. Find the area bounded by

2
y=f@)=zy=9@)=_—7 amdy=h(z)=2z+2.

(

/
A

Answer. Area is

/(M@—fWWM+A<mw—ﬂme

-2

:/Z(2x+2—x)+/ol(xil — x)dx

x? 0 227!
= {—+2x} —I—{21n|x—|—1|——}
2 —2 2 ]o

1 3
=2 2In2 — =) = — + 1n4.
+ (2In 2) 2+n

10



