MMAT5520 Differential Equations \& Linear Algebra Mid-term Exam (27 Oct 2016)
 Suggested Solution
 Prepared by CHEUNG Siu Wun

Name: \qquad ID: \qquad Marks: \qquad $/ 50$
Answer all questions.
Write your answers in the space provided.

1. (8 marks) Let $A=\left(\begin{array}{ccc}a & 3 & 1 \\ 1 & 3 & 0 \\ -2 & 2 & -3\end{array}\right)$. It is known that $\operatorname{det}(A)=-1$.
(a) Find a.
(b) Find the determinant of $2 A^{T}$.
(c) Find \mathbf{A}^{-1}.

Solution:
(a) Expanding the determinant along the second row, we have

$$
\begin{aligned}
\operatorname{det}(\mathbf{A}) & =-1 \\
-\left((1)\left|\begin{array}{cc}
3 & 1 \\
2 & -3
\end{array}\right|-(3)\left|\begin{array}{cc}
a & 1 \\
-2 & -3
\end{array}\right|\right) & =-1 \\
-((1)(-11)-(3)(-3 a+2)) & =-1 \\
-(-11+9 a-6) & =-1 \\
17-9 a & =-1 \\
-9 a & =-18 \\
a & =2
\end{aligned}
$$

(b) Since $2 \mathbf{A}^{T}$ is obtained from multiplying the first, second, and the third row of \mathbf{A}^{T} by a constant 2 , we have

$$
\begin{aligned}
\operatorname{det}\left(2 \mathbf{A}^{T}\right) & =2^{3} \operatorname{det}\left(\mathbf{A}^{T}\right) \\
& =8 \operatorname{det}\left(\mathbf{A}^{T}\right) \\
& =8 \operatorname{det}(\mathbf{A}) \\
& =8(-1) \\
& =-8
\end{aligned}
$$

(c) The adjoint matrix of \mathbf{A} is given by

$$
\operatorname{adj} \mathbf{A}=\left(\begin{array}{cc}
\left|\begin{array}{cc}
3 & 0 \\
2 & -3 \\
1 & 0 \\
-2 & -3 \\
1 & 3 \\
-2 & 2
\end{array}\right| & -\left|\begin{array}{cc}
3 & 1 \\
2 & -3 \\
2 & 1 \\
-2 & -3 \\
-2 & 3 \\
-2 & 2
\end{array}\right| \\
-\left|\begin{array}{ll}
3 & 1 \\
3 & 0 \\
2 & 1 \\
1 & 0 \\
2 & 3 \\
1 & 3
\end{array}\right|
\end{array}\right)=\left(\begin{array}{rrr}
-9 & 11 & -3 \\
3 & -4 & 1 \\
8 & -10 & 3
\end{array}\right) .
$$

Therefore

$$
\mathbf{A}^{-1}=\frac{1}{\operatorname{det}(\mathbf{A})} \operatorname{adj} \mathbf{A}=\frac{1}{-1}\left(\begin{array}{rrr}
-9 & 11 & -3 \\
3 & -4 & 1 \\
8 & -10 & 3
\end{array}\right)=\left(\begin{array}{rrr}
9 & -11 & 3 \\
-3 & 4 & -1 \\
-8 & 10 & -3
\end{array}\right)
$$

2. (6 marks) Solve

$$
\frac{d y}{d x}=\frac{e^{x}}{2 y}, \quad y(0)=2
$$

Solution: The differential equation is a separable equation.

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{e^{x}}{2 y} \\
2 y d y & =e^{x} d x \\
\int 2 y d y & =\int e^{x} d x \\
y^{2} & =e^{x}+C .
\end{aligned}
$$

By the initial condition $y(0)=2>0$, we choose the positive branch

$$
y=\left(e^{x}+C\right)^{\frac{1}{2}} .
$$

Moreover, we have

$$
4=2^{2}=e^{0}=1+C \Longleftrightarrow C=3
$$

Therefore the solution is

$$
y=\left(e^{x}+3\right)^{\frac{1}{2}}
$$

3. (8 marks) Solve the equation

$$
\frac{d y}{d x}-y=x y^{5}
$$

Solution: The differential equation is a Bernoulli's equation. Let $u=y^{1-5}=y^{-4}$. We have

$$
\begin{aligned}
\frac{d u}{d x} & =(1-5) y^{-5} \frac{d y}{d x} \\
\frac{d u}{d x} & =-4 y^{-5}\left(y+x y^{5}\right) \\
\frac{d u}{d x} & =-4 y^{-4}-4 x \\
\frac{d u}{d x}+4 u & =-4 x .
\end{aligned}
$$

An integrating factor is

$$
\exp \left(\int 4 d x\right)=e^{4 x}
$$

Multiplying $e^{4 x}$ on both sides, we ahve

$$
\begin{aligned}
e^{4 x} \frac{d u}{d x}+4 e^{4 x} u & =-4 x e^{4 x} \\
\frac{d}{d x}\left(e^{4 x} u\right) & =-4 x e^{4 x} \\
e^{4 x} u & =\int\left(-4 x e^{4 x}\right) d x .
\end{aligned}
$$

Using integration by parts, we have

$$
\begin{aligned}
\int\left(-4 x e^{4 x}\right) d x & =-\int x d\left(e^{4 x}\right) \\
& =-x e^{4 x}+\int e^{4 x} d x \\
& =-x e^{4 x}+\frac{1}{4} e^{4 x}+C .
\end{aligned}
$$

Therefore, we have

$$
\begin{aligned}
e^{4 x} u & =-x e^{4 x}+\frac{1}{4} e^{4 x} \\
u & =-x+\frac{1}{4}+C e^{-4 x} \\
y^{-4} & =-x+\frac{1}{4}+C e^{-4 x} \\
y^{4} & =\left(-x+\frac{1}{4}+C e^{-4 x}\right)^{-1} \text { or } y=0 .
\end{aligned}
$$

4. (8 marks) Show that the equation

$$
\left(4 x y+2 y^{2}\right) d x+\left(x^{2}+3 x y\right) d y=0
$$

has an integrating factor of the form $\mu(x, y)=y^{k}$ and solve the equation. Solution: Multiplying the equation by $\mu(x, y)=y^{k}$, we have

$$
\left(4 x y^{k+1}+2 y^{k+2}\right) d x+\left(x^{2} y^{k}+3 x y^{k+1}\right) d y=0
$$

Now we have

$$
\left\{\begin{array} { l }
{ M (x , y) = 4 x y ^ { k + 1 } + 2 y ^ { k + 2 } } \\
{ N (x , y) = x ^ { 2 } y ^ { k } + 3 x y ^ { k + 1 } }
\end{array} \Longrightarrow \left\{\begin{array}{l}
\frac{\partial M}{\partial y}=4(k+1) x y^{k}+2(k+2) y^{k+1} \\
\frac{\partial N}{\partial x}=2 x y^{k}+3 y^{k+1}
\end{array} .\right.\right.
$$

By choosing $k=-\frac{1}{2}$, we have

$$
\frac{\partial M}{\partial y}=2 x y^{-\frac{1}{2}}+3 y^{\frac{1}{2}}=\frac{\partial N}{\partial x}
$$

and the equation is exact. In this case, we set

$$
\begin{aligned}
F(x, y) & =\int M(x, y) d x \\
& =\int\left(4 x y^{\frac{1}{2}}+2 y^{\frac{3}{2}}\right) d x \\
& =2 x^{2} y^{\frac{1}{2}}+2 x y^{\frac{3}{2}}+g(y)
\end{aligned}
$$

Now, we want

$$
\begin{aligned}
\frac{\partial F}{\partial y} & =N(x, y) \\
x^{2} y^{-\frac{1}{2}}+3 x y^{\frac{1}{2}}+g^{\prime}(y) & =x^{2} y^{-\frac{1}{2}}+3 x y^{\frac{1}{2}} \\
g^{\prime}(y) & =0 \\
g(y) & =C .
\end{aligned}
$$

The general solution of the differential equation is

$$
F(x, y)=C \Longleftrightarrow x^{2} y^{\frac{1}{2}}+x y^{\frac{3}{2}}=C
$$

5. (6 marks) Let C be the circle determined by the points $(3,5),(2,-2)$ and $(4,2)$. Write down the equation of C in the form $x^{2}+y^{2}+D x+E y+F=0$ by considering a suitable determinant. (Finding D, E, F by solving equations would obtain zero mark.)
Solution: The required equation is

$$
\begin{aligned}
\left|\begin{array}{cccc}
1 & x & y & x^{2}+y^{2} \\
1 & 3 & 5 & 3^{2}+5^{2} \\
1 & 2 & -2 & 2^{2}+(-2)^{2} \\
1 & 4 & 2 & 4^{2}+2^{2}
\end{array}\right|=0 \\
\left|\begin{array}{cccc}
1 & x & y & x^{2}+y^{2} \\
1 & 3 & 5 & 34 \\
1 & 2 & -2 & 8 \\
1 & 4 & 2 & 20
\end{array}\right|=0 \\
\left|\begin{array}{cccc}
1 & x & y & x^{2}+y^{2} \\
1 & 3 & 5 & 34 \\
0 & -1 & -7 & -26 \\
0 & 1 & -3 & -14
\end{array}\right|=0 \\
\left|\begin{array}{cccc}
1 & x & y & x^{2}+y^{2} \\
1 & 3 & 5 & 34 \\
0 & 1 & 7 & 26 \\
0 & 1 & -3 & -14
\end{array}\right|=0 \\
\left|\begin{array}{cccc}
1 & x & y & x^{2}+y^{2} \\
1 & 0 & -16 & -44 \\
0 & 1 & 7 & 26 \\
0 & 0 & -10 & -40
\end{array}\right|=0 \\
\left|\begin{array}{cccc}
1 & x & y & x^{2}+y^{2} \\
1 & 0 & -16 & -44 \\
0 & 1 & 7 & 26 \\
0 & 0 & 1 & 4
\end{array}\right|=0 \\
\left|\begin{array}{cccc}
1 & x & y & x^{2}+y^{2} \\
1 & 0 & 0 & 20 \\
0 & 1 & 0 & -2 \\
0 & 0 & 1 & 4
\end{array}\right|=0 .
\end{aligned}
$$

Expanding the determinant along the second row, we have

$$
\begin{aligned}
-\left((1)\left|\begin{array}{ccc}
x & y & x^{2}+y^{2} \\
1 & 0 & -2 \\
0 & 1 & 4
\end{array}\right|-(20)\left|\begin{array}{lll}
1 & x & y \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right|\right) & =0 \\
-\left(x\left|\begin{array}{cc}
0 & -2 \\
1 & 4
\end{array}\right|-y\left|\begin{array}{cc}
1 & -2 \\
0 & 4
\end{array}\right|+\left(x^{2}+y^{2}\right)\left|\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right|\right)+(20)(1) & =0 \\
-\left(2 x-4 y+\left(x^{2}+y^{2}\right)\right)+20 & =0 \\
-x^{2}-y^{2}-2 x+4 y+20 & =0 \\
x^{2}+y^{2}+2 x-4 y-20 & =0 .
\end{aligned}
$$

6. (8 marks) Let $A=\left(\begin{array}{ccccc}1 & -3 & 2 & 3 & 4 \\ -2 & 6 & -4 & -1 & -3 \\ 3 & -9 & 6 & 2 & 5\end{array}\right)$.
(a) Find a basis for the null space of A.
(b) Find a basis for the row space of A.
(c) Find a basis for the column space of A.
(d) Suppose B is a matrix which is row equivalent to A. Find the rank and nullity of B^{T}.

Solution:

$$
\begin{aligned}
& \mathbf{A}=\left(\begin{array}{ccccc}
1 & -3 & 2 & 3 & 4 \\
-2 & 6 & -4 & -1 & -3 \\
3 & -9 & 6 & 2 & 5
\end{array}\right) \\
& \xrightarrow{\substack{R_{2} \rightarrow R_{2}+2 R_{1} \\
R_{3} \rightarrow R_{3}-3 R_{1}}}\left(\begin{array}{ccccc}
1 & -3 & 2 & 3 & 4 \\
0 & 0 & 0 & 5 & 5 \\
0 & 0 & 0 & -7 & -7
\end{array}\right) \\
& \xrightarrow{R_{2} \rightarrow \frac{1}{5} R_{2}}\left(\begin{array}{ccccc}
1 & -3 & 2 & 3 & 4 \\
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & -7 & -7
\end{array}\right) \\
& \xrightarrow{\substack{R_{1} \rightarrow R_{1}-3 R_{2} \\
R_{3} \rightarrow R_{3}+7 R_{2}}}\left(\begin{array}{ccccc}
1 & -3 & 2 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

We arrive at the reduced row echelon form of \mathbf{A}. The first and fourth columns contain leading entries. The second, third and fifth columns correspond to free variables.
(a) The set

$$
\left\{(3,1,0,0,0)^{T},(-2,0,1,0,0)^{T},(-1,0,0,-1,1)^{T}\right\}
$$

constitutes a basis for $\operatorname{Null}(\mathbf{A})$.
(b) The set

$$
\{(1,-3,2,0,1),(0,0,0,1,1)\}
$$

constitutes a basis for $\operatorname{Row}(\mathbf{A})$.
(c) The set

$$
\left\{(1,-2,3)^{T},(3,-1,2)^{T}\right\}
$$

constitutes a basis for $\operatorname{Col}(\mathbf{A})$.
(d) Since \mathbf{B} is row equivalent to \mathbf{A}, we have $\mathbf{B x}=\mathbf{0}$ if and only if $\mathbf{A x}=\mathbf{0}$. Hence

$$
\operatorname{Null}(\mathbf{B})=\operatorname{Null}(\mathbf{A}) \Longrightarrow \operatorname{nullity}(\mathbf{B})=\operatorname{nullity}(\mathbf{A})=3 .
$$

Note that B is a 3×5 matrix. By rank-nullity theorem, we have

$$
\operatorname{rank}(\mathbf{B})+\operatorname{nullity}(\mathbf{B})=5 \Longrightarrow \operatorname{rank}(\mathbf{B})=2 .
$$

This further implies

$$
\operatorname{rank}\left(\mathbf{B}^{T}\right)=\operatorname{rank}(\mathbf{B})=2
$$

Note that \mathbf{B}^{T} is a 5×3 matrix. Again, by rank-nullity theorem, we have

$$
\operatorname{rank}\left(\mathbf{B}^{T}\right)+\operatorname{nullity}\left(\mathbf{B}^{T}\right)=3 \Longrightarrow \operatorname{nullity}\left(\mathbf{B}^{T}\right)=1
$$

7. (6 marks) State whether the following statements are true or false. No explanation is required.
(a) Let $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3} \in \mathbb{R}^{3}$. If $\operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\} \neq \mathbb{R}^{3}$, then $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ are linearly dependent.
(b) If $V=\operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$, then $\operatorname{dim}(V)=3$.
(c) If $\mathbf{v}_{3} \notin \operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$, then $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ are linearly independent.
(d) If $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ are linearly independent, then $\mathbf{u}_{1}=\mathbf{v}_{1}, \mathbf{u}_{2}=\mathbf{v}_{1}+\mathbf{v}_{2}$, $\mathbf{u}_{3}=\mathbf{v}_{1}+\mathbf{v}_{2}+\mathbf{v}_{3}$ are linearly independent.
(e) For any vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$, the vectors $\mathbf{v}_{1}-\mathbf{v}_{2}, \mathbf{v}_{2}-\mathbf{v}_{3}, \mathbf{v}_{3}-\mathbf{v}_{1}$ are linearly dependent.
(f) If $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ are linearly dependent, then $\operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\} \neq \operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$

Solution:

Question	(a)	(b)	(c)	(d)	(e)	(f)
Answer	True	False	False	True	True	False

