THE CHINESE UNIVERSITY OF HONG KONG
 Department of Mathematics
 MMAT5520 Differential Equation \& Linear Algebra

Assignment 5

Due date: No need to submit

Exercise 6.2

1. Find the general solutions to the following systems of differential equations.
(a) $\left\{\begin{array}{l}x_{1}^{\prime}=x_{1}+2 x_{2} \\ x_{2}^{\prime}=2 x_{1}+x_{2}\end{array}\right.$
(c) $\left\{\begin{array}{l}x_{1}^{\prime}=x_{1}-5 x_{2} \\ x_{2}^{\prime}=x_{1}-x_{2}\end{array}\right.$
(f) $\left\{\begin{array}{l}x_{1}^{\prime}=4 x_{1}+x_{2}+x_{3} \\ x_{2}^{\prime}=x_{1}+4 x_{2}+x_{3} \\ x_{3}^{\prime}=x_{1}+x_{2}+4 x_{3}\end{array}\right.$
2. Solve the following initial value problem.
(b) $\left\{\begin{array}{l}x_{1}^{\prime}=9 x_{1}+5 x_{2} \\ x_{2}^{\prime}=-6 x_{1}-2 x_{2} \\ x_{1}(0)=1, x_{2}(0)=0\end{array}\right.$
3. Solve $\mathbf{x}^{\prime}=\mathbf{A x}$ for the given matrix \mathbf{A}.
(b) $\mathbf{A}=\left(\begin{array}{ll}1 & -1 \\ 5 & -1\end{array}\right)$
(d) $\mathbf{A}=\left(\begin{array}{ccc}4 & -1 & -1 \\ 1 & 2 & -1 \\ 1 & -1 & 2\end{array}\right)$

Exercise 6.3

1. Find the general solution to the system $\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}$ for the given matrix \mathbf{A}.
(a) $\mathbf{A}=\left(\begin{array}{cc}1 & 2 \\ -2 & -3\end{array}\right)$
(d) $\mathbf{A}=\left(\begin{array}{ccc}-3 & 0 & -4 \\ -1 & -1 & -1 \\ 1 & 0 & 1\end{array}\right)$
(c) $\mathbf{A}=\left(\begin{array}{cc}3 & -1 \\ 1 & 1\end{array}\right)$
(f) $\mathbf{A}=\left(\begin{array}{ccc}1 & 0 & 0 \\ -2 & -2 & -3 \\ 2 & 3 & 4\end{array}\right)$

Exercise 6.4

1. Find $\exp (\mathbf{A} t)$ where \mathbf{A} is the following matrix.
(b) $\left(\begin{array}{ll}5 & -4 \\ 2 & -1\end{array}\right)$
(f) $\left(\begin{array}{ccc}1 & 1 & 1 \\ 2 & 1 & -1 \\ -8 & -5 & -3\end{array}\right)$
(d) $\left(\begin{array}{cc}0 & 2 \\ -2 & 0\end{array}\right)$
(g) $\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right)$
(e) $\left(\begin{array}{ll}0 & 3 \\ 0 & 0\end{array}\right)$
2. Solve the system $\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}$ with initial condition $\mathbf{x}(0)=\mathbf{x}_{0}$ for given \mathbf{A} and \mathbf{x}_{0}.
(a) $\mathbf{A}=\left(\begin{array}{cc}2 & 5 \\ -1 & -4\end{array}\right) ; \mathbf{x}_{0}=\binom{1}{-5}$
(c) $\mathbf{A}=\left(\begin{array}{ccc}-1 & -2 & -2 \\ 1 & 2 & 1 \\ -1 & -1 & 0\end{array}\right) ; \mathbf{x}_{0}=\left(\begin{array}{c}3 \\ 0 \\ -1\end{array}\right)$

Exercise 6.5

1. For the given matrix \mathbf{A}, find the Jordan normal form of \mathbf{A} and the matrix exponential $\exp (\mathbf{A} t)$.
(a) $\left(\begin{array}{cc}4 & -1 \\ 1 & 2\end{array}\right)$
(d) $\left(\begin{array}{ccc}-2 & -9 & 0 \\ 1 & 4 & 0 \\ 1 & 3 & 1\end{array}\right)$
(c) $\left(\begin{array}{ccc}5 & -1 & 1 \\ 1 & 3 & 0 \\ -3 & 2 & 1\end{array}\right)$
(e) $\left(\begin{array}{ccc}-1 & 1 & 1 \\ 1 & 2 & 7 \\ -1 & -3 & -7\end{array}\right)$

Exercise 6.6

1. Find a fundamental matrix for the system $\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}$ where \mathbf{A} is the following matrix.
(a) $\left(\begin{array}{ll}3 & -2 \\ 2 & -2\end{array}\right)$
(g) $\left(\begin{array}{ccc}1 & 1 & 1 \\ 2 & 1 & -1 \\ -8 & -5 & -3\end{array}\right)$
(c) $\left(\begin{array}{ll}2 & -5 \\ 1 & -2\end{array}\right)$
(j) $\left(\begin{array}{ccc}3 & 1 & 3 \\ 2 & 2 & 2 \\ -1 & 0 & 1\end{array}\right)$
2. Find the fundamental matrix $\boldsymbol{\Phi}$ which satisfies $\boldsymbol{\Phi}(0)=\boldsymbol{\Phi}_{0}$ for the system $\mathbf{x}^{\prime}=\mathbf{A x}$ for the given matrices \mathbf{A} and $\boldsymbol{\Phi}_{0}$.
(a) $\mathbf{A}=\left(\begin{array}{cc}3 & 4 \\ -1 & -2\end{array}\right) ; \boldsymbol{\Phi}_{0}=\left(\begin{array}{cc}2 & 0 \\ 1 & -1\end{array}\right)$
(c) $\mathbf{A}=\left(\begin{array}{ccc}3 & 0 & 0 \\ -4 & 7 & -4 \\ -2 & 2 & 1\end{array}\right) ; \boldsymbol{\Phi}_{0}=\left(\begin{array}{ccc}2 & 0 & -1 \\ 0 & -3 & 1 \\ -1 & 1 & 0\end{array}\right)$

Exercise 6.7

1. Use the method of variation of parameters to find a particular solution for each of the following non-homogeneous equations.
(a) $\mathbf{x}^{\prime}=\left(\begin{array}{ll}1 & 2 \\ 4 & 3\end{array}\right) \mathbf{x}+\binom{-6 e^{5 t}}{6 e^{5 t}}$
(c) $\mathbf{x}^{\prime}=\left(\begin{array}{ll}2 & -1 \\ 4 & -3\end{array}\right) \mathbf{x}+\binom{0}{9 e^{t}}$
