THE CHINESE UNIVERSITY OF HONG KONG
 Department of Mathematics
 MMAT5520 Differential Equation \& Linear Algebra

Assignment 4

Due date: 1 Dec (Thursday)
Exercise 5.2

1. Diagonalize the following matrices.
(b) $\left(\begin{array}{ll}3 & -2 \\ 4 & -1\end{array}\right)$
(d) $\left(\begin{array}{ccc}0 & -1 & 0 \\ 0 & 0 & -1 \\ 6 & 11 & 6\end{array}\right)$
(e) $\left(\begin{array}{ccc}3 & -2 & 0 \\ 0 & 1 & 0 \\ -4 & 4 & 1\end{array}\right)$
2. Show that that following matrices are not diagonalizable.
(a) $\left(\begin{array}{cc}3 & 1 \\ -1 & 1\end{array}\right)$
(b) $\left(\begin{array}{ccc}-1 & 1 & 0 \\ -4 & 3 & 0 \\ 1 & 0 & 2\end{array}\right)$
3. Let $\mathbf{A}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ be a 2×2 matrix. Show that if $(a-d)^{2}+4 b c \neq 0$, then \mathbf{A} is diagonalizable.
4. Prove that if \mathbf{A} is a non-singular matrix, then for any matrix \mathbf{B}, we have $\mathbf{A B}$ is similar to BA.

Exercise 5.3

1. Compute \mathbf{A}^{5} where \mathbf{A} is the given matrix.
(a) $\left(\begin{array}{ll}5 & -6 \\ 3 & -4\end{array}\right)$
(d) $\left(\begin{array}{ll}1 & -5 \\ 1 & -1\end{array}\right)$
(e) $\left(\begin{array}{lll}1 & 2 & -1 \\ 2 & 4 & -2 \\ 3 & 6 & -3\end{array}\right)$

Exercise 5.4

1. Find the minimal polynomial of \mathbf{A} where \mathbf{A} is the matrix given below. Then express \mathbf{A}^{4} and \mathbf{A}^{-1} as a polynomial in \mathbf{A} of smallest degree.
(a) $\left(\begin{array}{ll}5 & -4 \\ 3 & -2\end{array}\right)$
(d) $\left(\begin{array}{ccc}-1 & 1 & 0 \\ -4 & 3 & 0 \\ 1 & 0 & 2\end{array}\right)$
(b) $\left(\begin{array}{ll}3 & -2 \\ 2 & -1\end{array}\right)$
(e) $\left(\begin{array}{ccc}3 & 1 & 1 \\ 2 & 4 & 2 \\ -1 & -1 & 1\end{array}\right)$
