THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MMAT5520 Differential Equation & Linear Algebra

Assignment 2

Due date: 20 Oct 2016 (Thur)

Exercise 2.1:

2. Solve the following systems of linear equations.

(c)
$$\begin{cases} 2x_1 - x_2 + 5x_3 = 15\\ x_1 + 3x_2 - x_3 = 4\\ x_1 - 4x_2 + 6x_3 = 11\\ 3x_1 + 9x_2 - 3x_3 = 12 \end{cases}$$

(e)
$$\begin{cases} x_1 - 2x_2 + x_3 + x_4 = 1\\ x_1 - 2x_2 + x_3 - x_4 = -1\\ x_1 - 2x_2 + x_3 + 5x_4 = 5 \end{cases}$$

Exercise 2.4:

3. For the given matrix \mathbf{A} , evaluate \mathbf{A}^{-1} by finding the adjoint matrix $\operatorname{adj}\mathbf{A}$ of \mathbf{A} .

(b)
$$\mathbf{A} = \begin{pmatrix} 2 & -3 & 5 \\ 0 & 1 & -3 \\ 0 & 0 & 2 \end{pmatrix}$$

4. Use Cramer's Rule to solve the following linear systems.

($4x_1$	—	x_2	—	x_3	=	1
(a) $\boldsymbol{\zeta}$	$4x_1$ $2x_1$	+	$2x_2$	+	$3x_3$	=	10
	$5x_1$	_	$2x_2$	_	$2x_3$	=	-1

Exercise 2.5:

1. Find the equation of the parabola of the form $y = ax^2 + bx + c$ passing through the given set of three points.

(a)
$$(0, -5), (2, -1), (3, 4)$$

2. Find the equation of the circle passing through the given set of three points.

(a) (-1, -1), (6, 6), (7, 5)

Exercise 3.3

1. Determine whether the given set of vectors are linearly independent in \mathbb{R}^3 .

(e)
$$\mathbf{v}_1 = (3, -1, -2), \mathbf{v}_2 = (2, 0, -1), \mathbf{v}_3 = (1, -3, -2)$$

(f) $\mathbf{v}_1 = (1, -2, 2), \mathbf{v}_2 = (3, 0, 1), \mathbf{v}_3 = (1, -1, 2)$

Exercise 3.5

1. Find a basis for the null space , a basis for the row space and a basis for the column space for the given matrices.

(c)
$$\begin{pmatrix} 3 & -6 & 1 & 3 & 4 \\ 1 & -2 & 0 & 1 & 2 \\ 1 & -2 & 2 & 0 & 3 \end{pmatrix}$$
(d)
$$\begin{pmatrix} 1 & 1 & -1 & 7 \\ 1 & 4 & 5 & 16 \\ 1 & 3 & 3 & 13 \\ 2 & 5 & 4 & 23 \end{pmatrix}$$