THE CHINESE UNIVERSITY OF HONG KONG

 Department of Mathematics

 Department of Mathematics
 MMAT5520 Differential Equation \& Linear Algebra

Assignment 2

Due date: 20 Oct 2016 (Thur)

Exercise 2.1:

2. Solve the following systems of linear equations.
(c) $\left\{\begin{array}{c}2 x_{1}-x_{2}+5 x_{3}= \\ x_{1}+3 x_{2}-x_{3}= \\ x_{1}-4 x_{2}+6 x_{3}= \\ 3 x_{1}+9 x_{2}-3 x_{3}=12\end{array}\right.$
(e) $\left\{\begin{array}{l}x_{1}-2 x_{2}+x_{3}+x_{4}=1 \\ x_{1}-2 x_{2}+x_{3}-x_{4}=-1 \\ x_{1}-2 x_{2}+x_{3}+5 x_{4}=5\end{array}\right.$

Exercise 2.4:
3. For the given matrix \mathbf{A}, evaluate \mathbf{A}^{-1} by finding the adjoint matrix $\operatorname{adj} \mathbf{A}$ of \mathbf{A}.
(b) $\mathbf{A}=\left(\begin{array}{ccc}2 & -3 & 5 \\ 0 & 1 & -3 \\ 0 & 0 & 2\end{array}\right)$
4. Use Cramer's Rule to solve the following linear systems.
(a) $\left\{\begin{array}{l}4 x_{1}-x_{2}-x_{3}=1 \\ 2 x_{1}+2 x_{2}+3 x_{3}=10 \\ 5 x_{1}-2 x_{2}-2 x_{3}=-1\end{array}\right.$

Exercise 2.5:

1. Find the equation of the parabola of the form $y=a x^{2}+b x+c$ passing through the given set of three points.
(a) $(0,-5),(2,-1),(3,4)$
2. Find the equation of the circle passing through the given set of three points.
(a) $(-1,-1),(6,6),(7,5)$

Exercise 3.3

1. Determine whether the given set of vectors are linearly independent in \mathbb{R}^{3}.
(e) $\mathbf{v}_{1}=(3,-1,-2), \mathbf{v}_{2}=(2,0,-1), \mathbf{v}_{3}=(1,-3,-2)$
(f) $\mathbf{v}_{1}=(1,-2,2), \mathbf{v}_{2}=(3,0,1), \mathbf{v}_{3}=(1,-1,2)$

Exercise 3.5

1. Find a basis for the null space, a basis for the row space and a basis for the column space for the given matrices.
(c) $\left(\begin{array}{lllll}3 & -6 & 1 & 3 & 4 \\ 1 & -2 & 0 & 1 & 2 \\ 1 & -2 & 2 & 0 & 3\end{array}\right)$
(d) $\left(\begin{array}{cccc}1 & 1 & -1 & 7 \\ 1 & 4 & 5 & 16 \\ 1 & 3 & 3 & 13 \\ 2 & 5 & 4 & 23\end{array}\right)$
