# Linear Systems and Matrices 

Department of Mathematics
The Chinese University of Hong Kong
(1) Linear Systems and Matrices

- Row Echelon Form
- Matrix Operations
- Inverse of matrices
- Determinants
- Linear Equations and Curve Fitting

System of $m$ linear equations in $n$ unknowns (linear system)

$$
\left\{\begin{array}{cccccccc}
a_{11} x_{1} & +a_{12} x_{2} & +\cdots & + & a_{1 n} x_{n} & = & b_{1} \\
a_{21} x_{1} & + & a_{22} x_{2} & + & \cdots & + & a_{2 n} x_{n} & = \\
b_{2} \\
\vdots & & \vdots & & \ddots & & \vdots & = \\
\vdots \\
a_{m 1} x_{1} & + & a_{m 2} x_{2} & + & \cdots & + & a_{m n} x_{n} & = \\
b_{m}
\end{array}\right.
$$

Matrix form

$$
\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)=\left(\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{m}
\end{array}\right)
$$

## Augmented matrix

$$
\left(\begin{array}{cccc|c}
a_{11} & a_{12} & \cdots & a_{1 n} & b_{1} \\
a_{21} & a_{22} & \cdots & a_{2 n} & b_{2} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n} & b_{m}
\end{array}\right)
$$

## Definition

An elementary row operation is an operation on a matrix of one of the following form.
(1) Multiply a row by a non-zero constant.
(2) Interchange two rows.
(3) Replace a row by its sum with a multiple of another row.

## Definition

Two matrices $A$ and $B$ are said to be row equivalent if we can use elementary row operations to get $B$ from $A$.

## Proposition

If the augmented matrices of two linear systems are row equivalent, then the two systems are equivalent, i.e., they have the same solution set.

## Definition

A matrix $E$ is said to be in row echelon form if
(1) The first nonzero entry of each row of $E$ is 1 .
(2) Every row of $E$ that consists entirely of zeros lies beneath every row that contains a nonzero entry.
(3) In each row of $E$ that contains a nonzero entry, the number of leading zeros is strictly less than that in the preceding row.

## Proposition

Any matrix can be transformed into row echelon form by elementary row operations. This process is called Gaussian elimination.

Row echelon form of augmented matrix.

- Those variables that correspond to columns containing leading entries are called leading variables
- All the other variables are called free variables.

A system in row echelon form can be solved easily by back substitution.

## Example

Solve the linear system

$$
\left\{\begin{array}{c}
x_{1}+x_{2}-x_{3}=5 \\
2 x_{1}-x_{2}+4 x_{3}=-2 \\
x_{1}-2 x_{2}+5 x_{3}=-4
\end{array} .\right.
$$

Solution:

$$
\begin{aligned}
& \left(\begin{array}{ccc|c}
1 & 1 & -1 & 5 \\
2 & -1 & 4 & -2 \\
1 & -2 & 5 & -4
\end{array}\right) \quad \begin{array}{c}
R_{2} \rightarrow R_{2}-2 R_{1} \\
R_{3} \rightarrow R_{3}-R_{1}
\end{array} \quad\left(\begin{array}{ccc|c}
1 & 1 & -2 & 5 \\
0 & -3 & 6 & -12 \\
0 & -3 & 6 & -9
\end{array}\right) \\
& \xrightarrow{R_{2} \rightarrow-\frac{1}{3} R_{2}}\left(\begin{array}{ccc|c}
1 & 1 & -2 & 5 \\
0 & 1 & -2 & 4 \\
0 & -3 & 6 & -9
\end{array}\right) \quad \xrightarrow{R_{3} \rightarrow R_{3}+3 R_{2}} \quad\left(\begin{array}{ccc|c}
1 & 1 & -2 & 5 \\
0 & 1 & -2 & 4 \\
0 & 0 & 0 & 3
\end{array}\right)
\end{aligned}
$$

The third row of the last matrix corresponds to the equation

$$
0=3
$$

which is absurd. Therefore the solution set is empty and the system is inconsistent.

## Example

Solve the linear system

$$
\left\{\begin{array}{l}
x_{1}+x_{2}+x_{3}+x_{4}+x_{5}=2 \\
x_{1}+x_{2}+x_{3}+2 x_{4}+2 x_{5}=3 \\
x_{1}+x_{2}+x_{3}+2 x_{4}+3 x_{5}=2
\end{array}\right.
$$

Solution:

$$
\begin{aligned}
& \left(\begin{array}{lllll|l}
1 & 1 & 1 & 1 & 1 & 2 \\
1 & 1 & 1 & 2 & 2 & 3 \\
1 & 1 & 1 & 2 & 3 & 2
\end{array}\right) \quad \begin{array}{l}
R_{2} \rightarrow R_{2}-R_{1} \\
R_{3} \rightarrow R_{3}-R_{1}
\end{array} \quad\left(\begin{array}{lllll|l}
1 & 1 & 1 & 1 & 1 & 2 \\
0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 2 & 0
\end{array}\right) \\
& \xrightarrow{R_{3} \rightarrow R_{3}-R_{2}}\left(\begin{array}{lllll|c}
1 & 1 & 1 & 1 & 1 & 2 \\
0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & -1
\end{array}\right)
\end{aligned}
$$

Thus the system is equivalent to the following system

$$
\left\{\begin{aligned}
x_{1}+x_{2}+x_{3}+x_{4}+x_{5} & =2 \\
x_{4}+x_{5} & =1 \\
&
\end{aligned}\right.
$$

The solution of the system is

$$
\left\{\begin{array}{l}
x_{5}=-1 \\
x_{4}=1-x_{5}=2 \\
x_{1}=2-x_{2}-x_{3}-x_{4}-x_{5}=1-x_{2}-x_{3}
\end{array}\right.
$$

Here $x_{1}, x_{4}, x_{5}$ are leading variables while $x_{2}, x_{3}$ are free variables. Another way of expressing the solution is

$$
\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=(1-\alpha-\beta, \alpha, \beta, 2,-1), \alpha, \beta \in \mathbb{R}
$$

## Definition

A matrix $E$ is said to be in reduced row echelon form (or $E$ is a reduced row echelon matrix) if it satisfies all the following properties:
(1) It is in row echelon form.
(2) Each leading entry of $E$ is the only nonzero entry in its column.

## Proposition

Every matrix is row equivalent to one and only one matrix in reduced row echelon form.

## Example

Find the reduced row echelon form of the matrix

$$
\left(\begin{array}{cccc}
1 & 2 & 1 & 4 \\
3 & 8 & 7 & 20 \\
2 & 7 & 9 & 23
\end{array}\right) .
$$

## Solution:

$$
\begin{aligned}
& \left(\begin{array}{cccc}
1 & 2 & 1 & 4 \\
3 & 8 & 7 & 20 \\
2 & 7 & 9 & 23
\end{array}\right) \quad \begin{array}{l}
R_{2} \rightarrow R_{2}-3 R_{1} \\
R_{3} \rightarrow R_{3}-2 R_{1} \\
\end{array} \quad\left(\begin{array}{cccc}
1 & 2 & 1 & 4 \\
0 & 2 & 4 & 8 \\
0 & 3 & 7 & 15
\end{array}\right) \\
& \xrightarrow{R_{2} \rightarrow \frac{1}{2} R_{2}}\left(\begin{array}{cccc}
1 & 2 & 1 & 4 \\
0 & 1 & 2 & 4 \\
0 & 3 & 7 & 15
\end{array}\right) \quad \xrightarrow{R_{3} \rightarrow R_{3}-3 R_{2}} \quad\left(\begin{array}{cccc}
1 & 2 & 1 & 4 \\
0 & 1 & 2 & 4 \\
0 & 0 & 1 & 3
\end{array}\right) \\
& \xrightarrow{R_{1} \rightarrow R_{1}-2 R_{2}}\left(\begin{array}{cccc}
1 & 0 & -3 & -4 \\
0 & 1 & 2 & 4 \\
0 & 0 & 1 & 3
\end{array}\right) \quad \begin{array}{l}
R_{1} \rightarrow R_{1}+3 R_{3} \\
R_{2} \rightarrow R_{2}-2 R_{3}
\end{array} \quad\left(\begin{array}{cccc}
1 & 0 & 0 & 5 \\
0 & 1 & 0 & -2 \\
0 & 0 & 1 & 3
\end{array}\right)
\end{aligned}
$$

## Example

Solve the linear system

$$
\left\{\begin{array}{l}
x_{1}+2 x_{2}+3 x_{3}+4 x_{4}=5 \\
x_{1}+2 x_{2}+2 x_{3}+3 x_{4}=4 \\
x_{1}+2 x_{2}+x_{3}+2 x_{4}=3
\end{array}\right.
$$

## Solution:

$$
\begin{aligned}
& \left(\begin{array}{ccccc}
1 & 2 & 3 & 4 & 5 \\
1 & 2 & 2 & 3 & 4 \\
1 & 2 & 1 & 2 & 3
\end{array}\right) \quad \begin{array}{l}
R_{2} \rightarrow R_{2}-R_{1} \\
R_{3} \rightarrow R_{3}-R_{1}
\end{array} \quad\left(\begin{array}{ccccc}
1 & 2 & 3 & 4 & 5 \\
0 & 0 & -1 & -1 & -1 \\
0 & 0 & -2 & -2 & -2
\end{array}\right) \\
& \xrightarrow{R_{2} \longrightarrow-R_{2}}\left(\begin{array}{ccccc}
1 & 2 & 3 & 4 & 5 \\
0 & 0 & 1 & 1 & 1 \\
0 & 0 & -2 & -2 & -2
\end{array}\right) \quad R_{3} \rightarrow R_{3}+2 R_{2} \quad\left(\begin{array}{cccc}
1 & 2 & 3 & 4 \\
0 & 0 & 1 & 1 \\
0 \\
0 & 0 & 0 & 0
\end{array}\right) \\
& R_{1} \rightarrow \underset{\longrightarrow}{R_{1}-3 R_{2}} \quad\left(\begin{array}{lllll}
1 & 2 & 0 & 1 & 2 \\
0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

Now $x_{1}, x_{3}$ are leading variables while $x_{2}, x_{4}$ are free variables. The solution of the system is

$$
\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=(2-2 \alpha-\beta, \alpha, 1-\beta, \beta), \alpha, \beta \in \mathbb{R}
$$

## Theorem

Let

$$
\mathbf{A x}=\mathbf{b}
$$

be a linear system, where $\mathbf{A}$ is an $m \times n$ matrix. Let $\mathbf{R}$ be the unique $m \times(n+1)$ reduced row echelon matrix of the augmented matrix (A|b). Then the system has
(1) no solution if the last column of $\mathbf{R}$ contains a leading entry.
(2) unique solution if (1) does not holds and all variables are leading variables.
(3) infinitely many solutions if (1) does not holds and there exists at least one free variables.

## Theorem

Let $\mathbf{A}$ be an $n \times n$ matrix. Then homogeneous linear system

$$
\mathbf{A x}=\mathbf{0}
$$

with coefficient matrix $\mathbf{A}$ has only trivial solution if and only if $\mathbf{A}$ is row equivalent to the identity matrix $\mathbf{I}$.

## Definition

We define the following operations for matrices.
1 Addition: Let $\mathbf{A}=\left[a_{i j}\right]$ and $\mathbf{B}=\left[b_{i j}\right]$ be two $m \times n$ matrices. Define

$$
[\mathbf{A}+\mathbf{B}]_{i j}=a_{i j}+b_{i j} .
$$

That is

$$
\begin{aligned}
& \left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right)+\left(\begin{array}{cccc}
b_{11} & b_{12} & \cdots & b_{1 n} \\
b_{21} & b_{22} & \cdots & b_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
b_{m 1} & b_{m 2} & \cdots & b_{m n}
\end{array}\right) \\
& =\left(\begin{array}{cccc}
a_{11}+b_{11} & a_{12}+b_{12} & \cdots & a_{1 n}+b_{1 n} \\
a_{21}+b_{21} & a_{22}+b_{22} & \cdots & a_{2 n}+b_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1}+b_{m 1} & a_{m 2}+b_{m 2} & \cdots & a_{m n}+b_{m n}
\end{array}\right) .
\end{aligned}
$$

## Definition

2 Scalar multiplication: Let $\mathbf{A}=\left[a_{i j}\right]$ be an $m \times n$ matrix and c be a scalar. Then

$$
[c \mathbf{A}]_{i j}=c a_{i j}
$$

That is

$$
c\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right)=\left(\begin{array}{cccc}
c a_{11} & c a_{12} & \cdots & c a_{1 n} \\
c a_{21} & c a_{22} & \cdots & c a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
c a_{m 1} & c a_{m 2} & \cdots & c a_{m n}
\end{array}\right)
$$

## Definition

3 Matrix multiplication: Let $\mathbf{A}=\left[a_{i j}\right]$ be an $m \times n$ matrix and $\mathbf{B}=\left[b_{j k}\right]$ be an $n \times r$. Then their matrix product $\mathbf{A B}$ is an $m \times r$ matrix where

$$
[\mathbf{A B}]_{i k}=\sum_{j=1}^{n} a_{i j} b_{j k}=a_{i 1} b_{1 k}+a_{i 2} b_{2 k}+\cdots+a_{i n} b_{n k}
$$

For example: If $\mathbf{A}$ is a $3 \times 2$ matrix and $\mathbf{B}$ is a $2 \times 2$ matrix, then

$$
\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right)\left(\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array}\right)=\left(\begin{array}{ll}
a_{11} b_{11}+a_{12} b_{21} & a_{11} b_{12}+a_{12} b_{22} \\
a_{21} b_{11}+a_{22} b_{21} & a_{21} b_{12}+a_{22} b_{22} \\
a_{31} b_{11}+a_{32} b_{21} & a_{31} b_{12}+a_{32} b_{22}
\end{array}\right)
$$

is a $3 \times 2$ matrix.
(1) A zero matrix, denoted by $\mathbf{0}$, is a matrix whose entries are all zeros.
(2) An identity matrix, denoted by $\mathbf{I}$, is a square matrix that has ones on its principal diagonal and zero elsewhere.

## Theorem (Properties of matrix algebra)

Let A, B and C be matrices of appropriate sizes to make the indicated operations possible and $a, b$ be real numbers, then following identities hold.
(1) $\mathbf{A}+\mathbf{B}=\mathbf{B}+\mathbf{A}$
(2) $\mathbf{A}+(\mathbf{B}+\mathbf{C})=(\mathbf{A}+\mathbf{B})+\mathbf{C}$
(3) $\mathbf{A}+\mathbf{0}=\mathbf{0}+\mathrm{A}=\mathrm{A}$
(4) $a(\mathbf{A}+\mathbf{B})=a \mathbf{A}+a \mathbf{B}$
(5) $(a+b) \mathbf{A}=a \mathbf{A}+b \mathbf{A}$
(6) $a(b \mathbf{A})=(a b) \mathbf{A}$
(7) $a(\mathbf{A B})=(a \mathbf{A}) \mathbf{B}=\mathbf{A}(a \mathbf{B})$
(8) $A(B C)=(A B) C$
(9) $A(B+C)=A B+A C$
(10) $(\mathbf{A}+\mathbf{B}) \mathbf{C}=\mathbf{A C}+\mathbf{B C}$
(11) $A 0=0 A=0$
(12) $\mathbf{A I}=\mathbf{I A}=\mathbf{A}$

## Proof.

We only prove (8) and the rest are obvious. Let $\mathbf{A}=\left[a_{i j}\right]$ be $m \times n, \mathbf{B}=\left[b_{j k}\right]$ be $n \times r$ and $\mathbf{C}=\left[c_{k l}\right]$ be $r \times s$ matrices. Then

$$
\begin{aligned}
{[(\mathbf{A B}) \mathbf{C}]_{i l} } & =\sum_{k=1}^{r}[\mathbf{A B}]_{i k} c_{k l} \\
& =\sum_{k=1}^{r}\left(\sum_{j=1}^{n} a_{i j} b_{j k}\right) c_{k l} \\
& =\sum_{j=1}^{n} a_{i j}\left(\sum_{k=1}^{r} b_{j k} c_{k l}\right) \\
& =\sum_{j=1}^{n} a_{i j}[\mathbf{B C}]_{j l} \\
& =[\mathbf{A}(\mathbf{B C})]_{i l}
\end{aligned}
$$

## Remarks:

(1) In general, $\mathbf{A B} \neq \mathbf{B A}$. For example:

$$
\mathbf{A}=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \text { and } \mathbf{B}=\left(\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right)
$$

Then

$$
\begin{aligned}
& \mathbf{A B}=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right)=\left(\begin{array}{ll}
1 & 2 \\
0 & 2
\end{array}\right) \\
& \mathbf{B A}=\left(\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
1 & 1 \\
0 & 2
\end{array}\right)
\end{aligned}
$$

(2) $\mathbf{A B}=\mathbf{0}$ does not implies that $\mathbf{A}=\mathbf{0}$ or $\mathbf{B}=\mathbf{0}$. For example:

$$
\mathbf{A}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \neq \mathbf{0} \text { and } \mathbf{B}=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) \neq \mathbf{0}
$$

But

$$
\mathbf{A B}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)
$$

## Definition

Let $\mathbf{A}=\left[a_{i j}\right]$ be an $m \times n$ matrix. Then the transpose of $\mathbf{A}$ is the $n \times m$ matrix defined by interchanging rows and columns and is denoted by $\mathbf{A}^{T}$, i.e.,

$$
\left[\mathbf{A}^{T}\right]_{j i}=a_{i j} \text { for } 1 \leq j \leq n, 1 \leq i \leq m .
$$

## Example

(1) $\left(\begin{array}{ccc}2 & 0 & 5 \\ 4 & -1 & 7\end{array}\right)^{T}=\left(\begin{array}{cc}2 & 4 \\ 0 & -1 \\ 5 & 7\end{array}\right)$
(2) $\left(\begin{array}{ccc}7 & -2 & 6 \\ 1 & 2 & 3 \\ 5 & 0 & 4\end{array}\right)^{T}=\left(\begin{array}{ccc}7 & 1 & 5 \\ -2 & 2 & 0 \\ 6 & 3 & 4\end{array}\right)$

## Theorem (Properties of transpose)

For any $m \times n$ matrices $\mathbf{A}$ and $\mathbf{B}$,
(1) $\left(\mathbf{A}^{T}\right)^{T}=\mathbf{A}$;
(2) $(\mathbf{A}+\mathbf{B})^{T}=\mathbf{A}^{T}+\mathbf{B}^{T}$;
(3) $(c \mathbf{A})^{T}=c \mathbf{A}^{T}$;
(4) $(\mathbf{A B})^{T}=\mathbf{B}^{T} \mathbf{A}^{T}$.

## Definition

A square matrix $\mathbf{A}$ is said to be invertible, if there exists a matrix B such that

$$
\mathbf{A B}=\mathbf{B A}=\mathbf{I} .
$$

We say that $\mathbf{B}$ is a (multiplicative) inverse of $A$.

## Theorem

If $\mathbf{A}$ is invertible, then the inverse of $\mathbf{A}$ is unique.

## Proof.

Suppose $\mathbf{B}_{1}$ and $\mathbf{B}_{2}$ are multiplicative inverses of $\mathbf{A}$. Then

$$
\mathbf{B}_{2}=\mathbf{B}_{2} \mathbf{I}=\mathbf{B}_{2}\left(\mathbf{A} \mathbf{B}_{1}\right)=\left(\mathbf{B}_{2} \mathbf{A}\right) \mathbf{B}_{1}=\mathbf{I} \mathbf{B}_{1}=\mathbf{B}_{1} .
$$

The unique inverse of $\mathbf{A}$ is denoted by $\mathbf{A}^{-1}$.

## Proposition

The $2 \times 2$ matrix

$$
\mathbf{A}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

is invertible if and only if ad - bc $\neq 0$, in which case

$$
\mathbf{A}^{-1}=\frac{1}{a d-b c}\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right)
$$

## Proposition

Let $\mathbf{A}$ and $\mathbf{B}$ be two invertible $n \times n$ matrices.
(1) $\mathbf{A}^{-1}$ is invertible and $\left(\mathbf{A}^{-1}\right)^{-1}=\mathbf{A}$;
(2) For any nonnegative integer $k, \mathbf{A}^{k}$ is invertible and $\left(\mathbf{A}^{k}\right)^{-1}=\left(\mathbf{A}^{-1}\right)^{k}$;
(3) The product $\mathbf{A B}$ is invertible and

$$
(\mathbf{A B})^{-1}=\mathbf{B}^{-1} \mathbf{A}^{-1}
$$

(9) $\mathrm{A}^{T}$ is invertible and

$$
\left(\mathbf{A}^{T}\right)^{-1}=\left(\mathbf{A}^{-1}\right)^{T}
$$

## Proof.

We prove (3) only.

$$
\begin{aligned}
& (\mathbf{A B})\left(\mathbf{B}^{-1} \mathbf{A}^{-1}\right)=\mathbf{A}\left(\mathbf{B B}^{-1}\right) \mathbf{A}^{-1}=\mathbf{A} \mid \mathbf{A}^{-1}=\mathbf{A} \mathbf{A}^{-1}=\mathbf{I} \\
& \left(\mathbf{B}^{-1} \mathbf{A}^{-1}\right)(\mathbf{A B})=\mathbf{B}^{-1}\left(\mathbf{A}^{-1} \mathbf{A}\right) \mathbf{B}=\mathbf{B}^{-1} \mathbf{I} \mathbf{B}=\mathbf{B}^{-1} \mathbf{B}=\mathbf{I}
\end{aligned}
$$

Therefore $\mathbf{A B}$ is invertible and $\mathbf{B}^{-1} \mathbf{A}^{-1}$ is the inverse of $\mathbf{A B}$.

## Theorem

If the $n \times n$ matrix $\mathbf{A}$ is invertible, then for any $n$-vector $\mathbf{b}$ the system $\mathbf{A x}=\mathbf{b}$ has the unique solution $\mathbf{x}=\mathbf{A}^{-1} \mathbf{b}$.

## Example

Solve the system

$$
\left\{\begin{array}{l}
4 x_{1}+6 x_{2}=6 \\
5 x_{1}+9 x_{2}=18
\end{array}\right.
$$

Solution: Let $\mathbf{A}=\left(\begin{array}{ll}4 & 6 \\ 5 & 9\end{array}\right)$. Then

$$
\mathbf{A}^{-1}=\frac{1}{(4)(9)-(5)(6)}\left(\begin{array}{cc}
9 & -6 \\
-5 & 4
\end{array}\right)=\left(\begin{array}{cc}
\frac{3}{2} & -1 \\
-\frac{5}{6} & \frac{2}{3}
\end{array}\right)
$$

Thus the solution is

$$
\mathbf{x}=\mathbf{A}^{-1} \mathbf{b}=\left(\begin{array}{cc}
\frac{3}{2} & -1 \\
-\frac{5}{6} & \frac{2}{3}
\end{array}\right)\binom{6}{18}=\binom{-9}{7}
$$

Therefore $\left(x_{1}, x_{2}\right)=(-9,7)$.

## Definition

A square matrix $\mathbf{E}$ is called an elementary matrix if it can be obtained by performing a single elementary row operation on $\mathbf{I}$.

## Proposition

Let $\mathbf{E}$ be the elementary matrix obtained by performing a certain elementary row operation on $\mathbf{I}$. Then the result of performing the same elementary row operation on a matrix $\mathbf{A}$ is EA.

## Proposition

Every elementary matrix is invertible.

## Example

Examples of elementary matrices associated to elementary row operations and their inverses.
$\left.\begin{array}{|c|c|c|c|}\hline \begin{array}{c}\text { Elementary } \\ \text { row operation }\end{array} & \begin{array}{c}\text { Interchanging } \\ \text { two rows }\end{array} & \begin{array}{c}\text { Multiplying a row } \\ \text { by a nonzero constant }\end{array} & \begin{array}{c}\text { Adding a multiple of } \\ \text { a row to another row }\end{array} \\ \hline \text { Elementary matrix } & \left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right) & \left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3\end{array}\right) \\ \text { Inverse } & \left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right) & \left(\begin{array}{lll}1 & 0 & -2 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right) \\ \hline 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \frac{1}{3}\end{array}\right) \quad\left(\begin{array}{lll}1 & 0 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right) \quad\left(\begin{array}{ll} \\ \hline\end{array}\right.$

## Theorem

Let A be a square matrix. Then the following statements are equivalent.
(1) $\mathbf{A}$ is invertible
(2) $\mathbf{A}$ is row equivalent to $\mathbf{I}$
(3) A is a product of elementary matrices

## Proof.

It follows easily from the fact that an $n \times n$ reduced row echelon matrix is invertible if and only if it is the identity matrix $\mathbf{I}$.

Let $\mathbf{A}$ be an invertible matrix. Then the above theorem tells us that there exists elementary matrices $\mathbf{E}_{1}, \mathbf{E}_{2}, \cdots, \mathbf{E}_{k}$ such that

$$
\mathbf{E}_{k} \mathbf{E}_{k-1} \cdots \mathbf{E}_{2} \mathbf{E}_{1} \mathbf{A}=\mathbf{I}
$$

Multiplying both sides by $\left(\mathbf{E}_{1}\right)^{-1}\left(\mathbf{E}_{2}\right)^{-1} \cdots\left(\mathbf{E}_{k-1}\right)^{-1}\left(\mathbf{E}_{k}\right)^{-1}$ we have

$$
\mathbf{A}=\left(\mathbf{E}_{1}\right)^{-1}\left(\mathbf{E}_{2}\right)^{-1} \cdots\left(\mathbf{E}_{k-1}\right)^{-1}\left(\mathbf{E}_{k}\right)^{-1}
$$

Therefore

$$
\mathbf{A}^{-1}=\mathbf{E}_{k} \mathbf{E}_{k-1} \cdots \mathbf{E}_{2} \mathbf{E}_{1}
$$

by Proposition 3.4.

## Theorem

Let $\mathbf{A}$ be a square matrix. Suppose we can preform elementary row operation to the augmented matrix $(\mathbf{A} \mid \mathbf{I})$ to obtain a matrix of the form $(\mathbf{I} \mid \mathbf{E})$, then $\mathbf{A}^{-1}=\mathbf{E}$.

## Proof.

Let $\mathbf{E}_{1}, \mathbf{E}_{2}, \cdots, \mathbf{E}_{k}$ be elementary matrices such that

$$
\mathbf{E}_{k} \mathbf{E}_{k-1} \cdots \mathbf{E}_{2} \mathbf{E}_{1}(\mathbf{A} \mid \mathbf{I})=(\mathbf{I} \mid \mathbf{E}) .
$$

Then the multiplication on the left submatrix gives

$$
\mathbf{E}_{k} \mathbf{E}_{k-1} \cdots \mathbf{E}_{2} \mathbf{E}_{1} \mathbf{A}=\mathbf{I}
$$

and the multiplication of the right submatrix gives

$$
\mathbf{E}=\mathbf{E}_{k} \mathbf{E}_{k-1} \cdots \mathbf{E}_{2} \mathbf{E}_{1} \mathbf{I}=\mathbf{A}^{-1} .
$$

## Example

Find the inverse of

$$
\left(\begin{array}{lll}
4 & 3 & 2 \\
5 & 6 & 3 \\
3 & 5 & 2
\end{array}\right)
$$

Solution:

$$
\begin{gathered}
\xrightarrow{R_{1} \rightarrow R_{1}-R_{3}} \xrightarrow{\substack{R_{2} \rightarrow R_{2}-5 R_{1} \\
R_{3} \rightarrow R_{3}-3 R_{1}}}\left(\begin{array}{lll|lll}
4 & 3 & 2 \\
5 & 6 & 3 & 1 & 0 & 0 \\
3 & 5 & 2 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \\
\end{gathered}\left(\begin{array}{ccc|ccc}
1 & -2 & 0 \\
5 & 6 & 3 & 1 & 0 & -1 \\
3 & 5 & 2 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), ~\left(\begin{array}{ccc|ccc}
1 & -2 & 0 & 1 & 0 & -1 \\
0 & 16 & 3 \\
0 & 11 & 2 & -5 & 1 & 5 \\
-3 & 0 & 4
\end{array}\right),
$$

$$
\begin{aligned}
& \xrightarrow{R_{2} \rightarrow R_{2}-R_{3}}\left(\begin{array}{ccc|ccc}
1 & -2 & 0 & 1 & 0 & -1 \\
0 & 5 & 1 & -2 & 1 & 1 \\
0 & 11 & 2 & -3 & 0 & 4
\end{array}\right) \\
& \xrightarrow{R_{2} \leftrightarrow R_{3}} \underset{R_{3} \rightarrow R_{3}-5 R_{2}}{R_{1} \rightarrow R_{1}+2 R_{2}}\left(\begin{array}{ccc|ccc}
1 & -2 & 0 & 1 & 0 & -1 \\
0 & 1 & 0 & 1 & -2 & 2 \\
0 & 5 & 1 & -2 & 1 & 1 \\
1 & -2 & 0 & 1 & 0 & -1 \\
0 & 1 & 0 & 1 & -2 & 2 \\
0 & 0 & 1 & -7 & 11 & -9 \\
1 & 0 & 0 & 3 & -4 & 3 \\
0 & 1 & 0 \\
0 & 0 & 1 & 1 & -2 & 2 \\
-7 & 11 & -9
\end{array}\right)
\end{aligned}
$$

Therefore

$$
\mathbf{A}^{-1}=\left(\begin{array}{ccc}
3 & -4 & 3 \\
1 & -2 & 2 \\
-7 & 11 & -9
\end{array}\right)
$$

## Example

Find a $3 \times 2$ matrix $\mathbf{X}$ such that

$$
\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 2 \\
1 & 3 & 4
\end{array}\right) \mathbf{X}=\left(\begin{array}{cc}
0 & -3 \\
-1 & 4 \\
2 & 1
\end{array}\right)
$$

## Solution:

$$
\begin{aligned}
R_{2} \rightarrow R_{2}-5 R_{1} \\
R_{3} \\
\xrightarrow{R_{3}-3 R_{1}} \\
\xrightarrow{R_{2} \leftrightarrow R_{3}} \\
\hline
\end{aligned}\left(\begin{array}{lll|ll}
1 & 2 & 3 & 0 & -3 \\
2 & 1 & 2 & -1 & 4 \\
1 & 3 & 4 & 2 & 1
\end{array}\right)
$$

$$
\begin{aligned}
& \begin{array}{l}
\xrightarrow{R_{3} \rightarrow R_{3}+3 R_{2}} \\
R_{3} \longrightarrow-R_{3} \\
\\
\end{array}\left(\begin{array}{ccc|cc}
1 & 2 & 3 & 0 & -3 \\
0 & 1 & 1 & 2 & 4 \\
0 & 0 & -1 & 5 & 22
\end{array}\right) \\
& \begin{array}{c}
R_{1} \rightarrow R_{1}-3 R_{3} \\
R_{2} \\
R_{1} \rightarrow R_{2}-R_{3} \\
R_{1}-2 R_{2}
\end{array}\left(\begin{array}{lll|cc}
1 & 2 & 0 & 15 & 63 \\
0 & 1 & 0 & 7 & 26 \\
0 & 5 & 1 & -5 & -22 \\
1 & 0 & 0 & 1 & 11 \\
0 & 1 & 0 & 7 & 26 \\
0 & 0 & 1 & -5 & -22
\end{array}\right)
\end{aligned}
$$

Therefore we may take

$$
\mathbf{X}=\left(\begin{array}{cc}
1 & 11 \\
7 & 26 \\
-5 & -22
\end{array}\right)
$$

## Definition

Let $\mathbf{A}=\left[a_{i j}\right]$ be an $n \times n$ matrix.
(1) The ij-th minor of $\mathbf{A}$ is the determinant $M_{i j}$ of the $(n-1) \times(n-1)$ submatrix that remains after deleting the $i$-th row and the $j$-th column of $\mathbf{A}$.
(2) The ij-th cofactor of $\mathbf{A}$ is defined by

$$
A_{i j}=(-1)^{i+j} M_{i j}
$$

## Definition

Let $\mathbf{A}=\left[a_{i j}\right]$ be an $n \times n$ matrix. The determinant $\operatorname{det}(\mathbf{A})$ of $\mathbf{A}$ is defined inductively as follow.
(1) If $n=1$, then $\operatorname{det}(\mathbf{A})=a_{11}$.
(2) If $n>1$, then

$$
\operatorname{det}(\mathbf{A})=\sum_{k=1}^{n} a_{1 k} A_{1 k}=a_{11} A_{11}+a_{12} A_{12}+\cdots+a_{1 n} A_{1 n}
$$

where $A_{i j}$ is the ij-th cofactor of $\mathbf{A}$.

## Example

When $n=1,2$ or 3 , we have the following.
(1) The determinant of a $1 \times 1$ matrix is

$$
\left|a_{11}\right|=a_{11}
$$

(2) The determinant of a $2 \times 2$ matrix is

$$
\left|\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right|=a_{11} a_{22}-a_{12} a_{21}
$$

(3) The determinant of a $3 \times 3$ matrix is

$$
\left|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right|=a_{11}\left|\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right|-a_{12}\left|\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right|+a_{13}\left|\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right|
$$

## Example

$$
\begin{aligned}
& \left|\begin{array}{llll}
4 & 3 & 0 & 1 \\
3 & 2 & 0 & 1 \\
1 & 0 & 0 & 3 \\
0 & 1 & 2 & 1
\end{array}\right| \\
= & 4\left|\begin{array}{lll}
2 & 0 & 1 \\
0 & 0 & 3 \\
1 & 2 & 1
\end{array}\right|-3\left|\begin{array}{lll}
3 & 0 & 1 \\
1 & 0 & 3 \\
0 & 2 & 1
\end{array}\right|+0\left|\begin{array}{lll}
3 & 2 & 1 \\
1 & 0 & 3 \\
0 & 1 & 1
\end{array}\right|-1\left|\begin{array}{lll}
3 & 2 & 0 \\
1 & 0 & 0 \\
0 & 1 & 2
\end{array}\right| \\
= & 4\left(2\left|\begin{array}{ll}
0 & 3 \\
2 & 1
\end{array}\right|-0\left|\begin{array}{ll}
0 & 3 \\
1 & 1
\end{array}\right|+1\left|\begin{array}{ll}
0 & 0 \\
1 & 2
\end{array}\right|\right) \\
& -3\left(3\left|\begin{array}{ll}
0 & 3 \\
2 & 1
\end{array}\right|-0\left|\begin{array}{ll}
1 & 3 \\
0 & 1
\end{array}\right|+1\left|\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right|\right) \\
= & -\left(3\left|\begin{array}{ll}
0 & 0 \\
1 & 2
\end{array}\right|-2\left|\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right|+0\left|\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right|\right) \\
= & 4(-6))-3(3(-6)+1(2))-(-2(2))
\end{aligned}
$$

## Theorem

Let $\mathbf{A}=\left[a_{i j}\right]$ be an $n \times n$ matrix. Then

$$
\operatorname{det}(\mathbf{A})=\sum_{\sigma \in S_{n}} \operatorname{sign}(\sigma) a_{1 \sigma(1)} a_{2 \sigma(2)} \cdots a_{n \sigma(n)}
$$

where $S_{n}$ is the set of all permutations of $\{1,2, \cdots, n\}$ and

$$
\operatorname{sign}(\sigma)= \begin{cases}1 & \text { if } \sigma \text { is an even permutation } \\ -1 & \text { if } \sigma \text { is an odd permutation }\end{cases}
$$

(1) There are $n$ ! number of terms for an $n \times n$ determinant.
(2) Here we write down the 4 ! $=24$ terms of a $4 \times 4$ determinant.

$$
\begin{aligned}
& \left|\begin{array}{llll}
a_{11} & a_{12} & a_{13} & a_{14} \\
a_{21} & a_{22} & a_{23} & a_{24} \\
a_{31} & a_{32} & a_{33} & a_{34} \\
a_{41} & a_{42} & a_{43} & a_{44}
\end{array}\right| \\
& a_{11} a_{22} a_{33} a_{44}-a_{11} a_{22} a_{34} a_{43}-a_{11} a_{23} a_{32} a_{44}+a_{11} a_{23} a_{34} a_{42} \\
& +a_{11} a_{24} a_{32} a_{43}-a_{11} a_{24} a_{33} a_{42}-a_{12} a_{21} a_{33} a_{44}+a_{12} a_{21} a_{34} a_{43} \\
& +\quad+a_{12} a_{23} a_{31} a_{44}-a_{12} a_{23} a_{34} a_{41}-a_{12} a_{24} a_{31} a_{43}+a_{12} a_{24} a_{33} a_{41} \\
& +a_{13} a_{21} a_{32} a_{44}-a_{13} a_{21} a_{34} a_{42}-a_{13} a_{22} a_{31} a_{44}+a_{13} a_{22} a_{34} a_{41} \\
& +a_{13} a_{24} a_{31} a_{42}-a_{13} a_{24} a_{32} a_{41}-a_{14} a_{21} a_{32} a_{43}+a_{14} a_{21} a_{33} a_{42} \\
& +a_{14} a_{22} a_{31} a_{43}-a_{14} a_{22} a_{33} a_{41}-a_{14} a_{23} a_{31} a_{42}+a_{14} a_{23} a_{32} a_{41}
\end{aligned}
$$

## Theorem

The determinant of an $n \times n$ matrix $\mathbf{A}=\left[a_{i j}\right]$ can be obtained by expansion along any row or column, i.e., for any $1 \leq i \leq n$, we have

$$
\operatorname{det}(\mathbf{A})=a_{i 1} A_{i l}+a_{i 2} A_{i 2}+\cdots+a_{i n} A_{i n}
$$

and for any $1 \leq j \leq n$, we have

$$
\operatorname{det}(\mathbf{A})=a_{1 j} A_{1 j}+a_{2 j} A_{2 j}+\cdots+a_{n j} A_{n j} .
$$

## Example

We can expand the determinant along the third column.

$$
\begin{aligned}
\left|\begin{array}{llll}
4 & 3 & 0 & 1 \\
3 & 2 & 0 & 1 \\
1 & 0 & 0 & 3 \\
0 & 1 & 2 & 1
\end{array}\right| & =-2\left|\begin{array}{lll}
4 & 3 & 1 \\
3 & 2 & 1 \\
1 & 0 & 3
\end{array}\right| \\
& =-2\left(-3\left|\begin{array}{ll}
3 & 1 \\
1 & 3
\end{array}\right|+2\left|\begin{array}{ll}
4 & 1 \\
1 & 3
\end{array}\right|\right) \\
& =-2(-3(8)+2(11)) \\
& =4
\end{aligned}
$$

## Proposition

Properties of determinant.
(1) $\operatorname{det}(\mathbf{I})=1$;
(2) Suppose that the matrices $\mathbf{A}_{1}, \mathbf{A}_{2}$ and $\mathbf{B}$ are identical except for their $i$-th row (or column) and that the $i$-th row (or column) of $\mathbf{B}$ is the sum of the $i$-th row (or column) of $\mathbf{A}_{1}$ and $\mathbf{A}_{2}$, then $\operatorname{det}(\mathbf{B})=\operatorname{det}\left(\mathbf{A}_{1}\right)+\operatorname{det}\left(\mathbf{A}_{2}\right)$;
(3) If $\mathbf{B}$ is obtained from $\mathbf{A}$ by multiplying a single row (or column) of $\mathbf{A}$ by the constant $k$, then $\operatorname{det}(\mathbf{B})=k \operatorname{det}(\mathbf{A})$;
(9) If $\mathbf{B}$ is obtained from $\mathbf{A}$ by interchanging two rows (or columns), then $\operatorname{det}(\mathbf{B})=-\operatorname{det}(\mathbf{A})$;

## Proposition

(5) If $\mathbf{B}$ is obtained from $\mathbf{A}$ by adding a constant multiple of one row (or column) of $\mathbf{A}$ to another row (or column) of $\mathbf{A}$, then $\operatorname{det}(\mathbf{B})=\operatorname{det}(\mathbf{A})$;
(6) If two rows (or columns) of $\mathbf{A}$ are identical, then $\operatorname{det}(\mathbf{A})=0$;
(7) If $\mathbf{A}$ has a row (or column) consisting entirely of zeros, then $\operatorname{det}(\mathbf{A})=0$;
(8) $\operatorname{det}\left(\mathbf{A}^{T}\right)=\operatorname{det}(\mathbf{A})$;
(9) If $\mathbf{A}$ is a triangular matrix, then $\operatorname{det}(\mathbf{A})$ is the product of the diagonal elements of $\mathbf{A}$;
(10) $\operatorname{det}(\mathbf{A B})=\operatorname{det}(\mathbf{A}) \operatorname{det}(\mathbf{B})$.

## Example

$$
\begin{aligned}
\left|\begin{array}{cccc}
2 & 2 & 5 & 5 \\
1 & -2 & 4 & 1 \\
-1 & 2 & -2 & -2 \\
-2 & 7 & -3 & 2
\end{array}\right| & =\left|\begin{array}{cccc}
0 & 6 & -3 & 3 \\
1 & -2 & 4 & 1 \\
0 & 0 & 2 & -1 \\
0 & 3 & 5 & 4
\end{array}\right|\left(\begin{array}{c}
R_{1} \rightarrow R_{1}-2 R_{2} \\
R_{3} \rightarrow R_{3}+R_{2} \\
R_{4} \rightarrow R_{4}+2 R_{2}
\end{array}\right) \\
& =-\left|\begin{array}{ccc}
6 & -3 & 3 \\
0 & 2 & -1 \\
3 & 5 & 4
\end{array}\right| \\
& =-3\left|\begin{array}{ccc}
2 & -1 & 1 \\
0 & 2 & -1 \\
3 & 5 & 4
\end{array}\right| \\
& =-3\left(2\left|\begin{array}{cc}
-1 & 1 \\
5 & 4
\end{array}\right|+3\left|\begin{array}{cc}
-1 & 1 \\
2 & -1
\end{array}\right|\right) \\
& =-69
\end{aligned}
$$

## Example

$$
\begin{aligned}
\left|\begin{array}{cccc}
2 & 2 & 5 & 5 \\
1 & -2 & 4 & 1 \\
-1 & 2 & -2 & -2 \\
-2 & 7 & -3 & 2
\end{array}\right| & =\left|\begin{array}{cccc}
2 & 6 & -3 & 3 \\
1 & 0 & 0 & 0 \\
-1 & 0 & 2 & -1 \\
-2 & 3 & 5 & 4
\end{array}\right|\left(\begin{array}{l}
C_{2} \rightarrow C_{2}+2 C_{1} \\
C_{3} \rightarrow C_{3}-4 C_{1} \\
C_{4} \rightarrow C_{4}-C_{1}
\end{array}\right) \\
& =-\left|\begin{array}{ccc}
6 & -3 & 3 \\
0 & 2 & -1 \\
3 & 5 & 4
\end{array}\right| \\
& =-\left|\begin{array}{ccc}
0 & 0 & 3 \\
2 & 1 & -1 \\
-5 & 9 & 4
\end{array}\right|\binom{C_{1} \rightarrow C_{1}-2 C_{3}}{C_{2} \rightarrow C_{2}+C_{3}} \\
& =-3\left|\begin{array}{cc}
2 & 1 \\
-5 & 9
\end{array}\right| \\
& =-69
\end{aligned}
$$

## Example

Let $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n}$ be real numbers and

$$
\mathbf{A}=\left(\begin{array}{ccccc}
1 & \alpha_{1} & \alpha_{2} & \cdots & \alpha_{n} \\
1 & x & \alpha_{2} & \cdots & \alpha_{n} \\
1 & \alpha_{1} & x & \cdots & \alpha_{n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & \alpha_{1} & \alpha_{2} & \cdots & x
\end{array}\right)
$$

Show that

$$
\operatorname{det}(\mathbf{A})=\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right) \cdots\left(x-\alpha_{n}\right) .
$$

Solution: Note that $A$ is an $(n+1) \times(n+1)$ matrix. For simplicity we assume that $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n}$ are distinct. Observe that we have the following 3 facts.
(1) $\operatorname{det}(\mathbf{A})$ is a polynomial of degree $n$ in $x$;
(2) $\operatorname{det}(\mathbf{A})=0$ when $x=\alpha_{i}$ for some $i$;
(3) The coefficient of $x^{n}$ of $\operatorname{det}(\mathbf{A})$ is 1 .

Then the equality follows by the factor theorem.

## Example

The Vandermonde determinant is defined as

$$
V\left(x_{1}, x_{2}, \cdots, x_{n}\right)=\left|\begin{array}{ccccc}
1 & x_{1} & x_{1}^{2} & \cdots & x_{1}^{n-1} \\
1 & x_{2} & x_{2}^{2} & \cdots & x_{2}^{n-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & x_{n} & x_{n}^{2} & \cdots & x_{n}^{n-1}
\end{array}\right|
$$

Show that

$$
V\left(x_{1}, x_{2}, \cdots, x_{n}\right)=\prod_{1 \leq i<j \leq n}\left(x_{j}-x_{i}\right)
$$

Solution: Using factor theorem, the equality is a consequence of the following 3 facts.
(1) $V\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ is a polynomial of degree $n(n-1) / 2$ in $x_{1}, x_{2}, \cdots, x_{n}$;
(2) For any $i \neq j, V\left(x_{1}, x_{2}, \cdots, x_{n}\right)=0$ when $x_{i}=x_{j}$;
(3) The coefficient of $x_{2} x_{3}^{2} \cdots x_{n}^{n-1}$ of $V\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ is 1 .

## Lemma

Let $\mathbf{A}=\left[a_{i j}\right]$ be an $n \times n$ matrix and $\mathbf{E}$ be an $n \times n$ elementary matrix. Then

$$
\operatorname{det}(\mathbf{E A})=\operatorname{det}(\mathbf{E}) \operatorname{det}(\mathbf{A})
$$

## Definition

Let $\mathbf{A}$ be a square matrix. We say that $\mathbf{A}$ is singular if the system $\mathbf{A x}=\mathbf{0}$ has non-trivial solution. A square matrix is nonsingular if it is not singular.

## Theorem

The following properties of an $n \times n$ matrix $\mathbf{A}$ are equivalent.
(1) $\mathbf{A}$ is nonsingular, i.e., the system $\mathbf{A x}=\mathbf{0}$ has only trivial solution $\mathbf{x}=\mathbf{0}$.
(2) $\mathbf{A}$ is invertible, i.e., $\mathbf{A}^{-1}$ exists.
(3) $\operatorname{det}(\mathbf{A}) \neq 0$.
(9) $\mathbf{A}$ is row equivalent to $\mathbf{I}$.
(5) For any n-column vector $\mathbf{b}$, the system $\mathbf{A} \mathbf{x}=\mathbf{b}$ has a unique solution.
(0) For any n-column vector $\mathbf{b}$, the system $\mathbf{A x}=\mathbf{b}$ has a solution.

## Proof.

We prove $(3) \Leftrightarrow(4)$ and leave the rest as an exercise. Multiply elementary matrices $\mathbf{E}_{1}, \mathbf{E}_{2}, \cdots, \mathbf{E}_{k}$ to $\mathbf{A}$ so that

$$
\mathbf{R}=\mathbf{E}_{k} \mathbf{E}_{k-1} \cdots \mathbf{E}_{1} \mathbf{A}
$$

is in reduced row echelon form. Then by the lemma above, we have

$$
\operatorname{det}(\mathbf{R})=\operatorname{det}\left(\mathbf{E}_{k}\right) \operatorname{det}\left(\mathbf{E}_{k-1}\right) \cdots \operatorname{det}\left(\mathbf{E}_{1}\right) \operatorname{det}(\mathbf{A})
$$

Since determinant of elementary matrices are always nonzero, we have $\operatorname{det}(\mathbf{A})$ is nonzero if and only if $\operatorname{det}(\mathbf{R})$ is nonzero. It is easy to see that the determinant of a reduced row echelon matrix is nonzero if and only if it is the identity matrix $\mathbf{I}$.

## Theorem

Let $\mathbf{A}$ and $\mathbf{B}$ be two $n \times n$ matrices. Then

$$
\operatorname{det}(\mathbf{A B})=\operatorname{det}(\mathbf{A}) \operatorname{det}(\mathbf{B}) .
$$

## Proof.

If $\mathbf{A}$ is not invertible, then $\mathbf{A B}$ is not invertible and $\operatorname{det}(\mathbf{A B})=0=\operatorname{det}(\mathbf{A}) \operatorname{det}(\mathbf{B})$. If $\mathbf{A}$ is invertible, then there exists elementary matrices $\mathbf{E}_{1}, \mathbf{E}_{2}, \cdots, \mathbf{E}_{k}$ such that $\mathbf{E}_{k} \mathbf{E}_{k-1} \cdots \mathbf{E}_{1}=\mathbf{A}$. Hence

$$
\begin{aligned}
\operatorname{det}(\mathbf{A B}) & =\operatorname{det}\left(\mathbf{E}_{k} \mathbf{E}_{k-1} \cdots \mathbf{E}_{1} \mathbf{B}\right) \\
& =\operatorname{det}\left(\mathbf{E}_{k}\right) \operatorname{det}\left(\mathbf{E}_{k-1}\right) \cdots \operatorname{det}\left(\mathbf{E}_{1}\right) \operatorname{det}(\mathbf{B}) \\
& =\operatorname{det}\left(\mathbf{E}_{k} \mathbf{E}_{k-1} \cdots \mathbf{E}_{1}\right) \operatorname{det}(\mathbf{B}) \\
& =\operatorname{det}(\mathbf{A}) \operatorname{det}(\mathbf{B}) .
\end{aligned}
$$

## Definition

Let $\mathbf{A}$ be a square matrix. The adjoint matrix of $\mathbf{A}$ is

$$
\operatorname{adj} \mathbf{A}=\left[A_{i j}\right]^{T}
$$

where $A_{i j}$ is the ij-th cofactor of $\mathbf{A}$. In other words,

$$
[\operatorname{adj} \mathbf{A}]_{i j}=A_{j i}
$$

## Theorem

Let A be a square matrix. Then

$$
\mathbf{A} \operatorname{adj} \mathbf{A}=(\operatorname{adj} \mathbf{A}) \mathbf{A}=\operatorname{det}(\mathbf{A}) \mathbf{I},
$$

where $\operatorname{adj} \mathbf{A}$ is the adjoint matrix. In particular if $\mathbf{A}$ is invertible, then

$$
\mathbf{A}^{-1}=\frac{1}{\operatorname{det}(\mathbf{A})} \operatorname{adj} \mathbf{A}
$$

## Proof.

The second statement follows easily from the first. For the first statement, we have

$$
\begin{aligned}
{[\mathbf{A} a d j \mathbf{A}]_{i j} } & =\sum_{l=1}^{n} a_{i l}[\operatorname{adj} \mathbf{A}]_{l j} \\
& =\sum_{l=1}^{n} a_{i l} A_{j l} \\
& =\delta_{i j} \operatorname{det}(\mathbf{A})
\end{aligned}
$$

where

$$
\delta_{i j}= \begin{cases}1, & i=j \\ 0, & i \neq j\end{cases}
$$

Therefore $\mathbf{A} \operatorname{adj} \mathbf{A}=\operatorname{det}(A) \mathbf{I}$ and similarly $(\operatorname{adj} \mathbf{A}) \mathbf{A}=\operatorname{det}(A) \mathbf{I}$.

## Example

Let $\mathbf{A}=\left(\begin{array}{lll}4 & 3 & 2 \\ 5 & 6 & 3 \\ 3 & 5 & 2\end{array}\right)$. We have

$$
\begin{aligned}
& \operatorname{det}(\mathbf{A})=4\left|\begin{array}{ll}
6 & 3 \\
5 & 2
\end{array}\right|-3\left|\begin{array}{ll}
5 & 3 \\
3 & 2
\end{array}\right|+2\left|\begin{array}{ll}
5 & 6 \\
3 & 5
\end{array}\right|=4(-3)-3(1)+2(7)=-1, \\
& \operatorname{adj} \mathbf{A}=\left(\begin{array}{ccc}
\left|\begin{array}{ll}
6 & 3 \\
5 & 2
\end{array}\right| & -\left|\begin{array}{ll}
3 & 2 \\
5 & 2
\end{array}\right| & \left|\begin{array}{ll}
3 & 2 \\
6 & 3
\end{array}\right| \\
-\left|\begin{array}{ll}
5 & 3 \\
3 & 2
\end{array}\right| & \left|\begin{array}{cc}
4 & 2 \\
3 & 2
\end{array}\right| & -\left|\begin{array}{ll}
4 & 2 \\
5 & 3
\end{array}\right| \\
\left|\begin{array}{cc}
5 & 6 \\
3 & 5
\end{array}\right| & -\left|\begin{array}{ll}
4 & 3 \\
3 & 5
\end{array}\right| & \left|\begin{array}{ll}
4 & 3 \\
5 & 6
\end{array}\right|
\end{array}\right)=\left(\begin{array}{ccc}
-3 & 4 & -3 \\
-1 & 2 & -2 \\
7 & -11 & 9
\end{array}\right) .
\end{aligned}
$$

Therefore

$$
\mathbf{A}^{-1}=\frac{1}{-1}\left(\begin{array}{ccc}
-3 & 4 & -3 \\
-1 & 2 & -2 \\
7 & -11 & 9
\end{array}\right)=\left(\begin{array}{ccc}
3 & -4 & 3 \\
1 & -2 & 2 \\
-7 & 11 & -9
\end{array}\right)
$$

## Theorem (Cramer's rule)

Consider the $n \times n$ linear system $\mathbf{A x}=\mathbf{b}$, with

$$
\mathbf{A}=\left[\begin{array}{llll}
\mathbf{a}_{1} & \mathbf{a}_{2} & \cdots & \mathbf{a}_{n}
\end{array}\right]
$$

If $\operatorname{det}(\mathbf{A}) \neq 0$, then the $i$-th entry of the unique solution
$\mathbf{x}=\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ is

$$
x_{i}=\operatorname{det}(\mathbf{A})^{-1} \operatorname{det}\left(\left[\begin{array}{lllllll}
\mathbf{a}_{1} & \cdots & \mathbf{a}_{i-1} & \mathbf{b} & \mathbf{a}_{i+1} & \cdots & \mathbf{a}_{n}
\end{array}\right]\right),
$$

where the matrix in the last factor is obtained by replacing the $i$-th column of $\mathbf{A}$ by $\mathbf{b}$.

## Proof.

$$
\begin{aligned}
x_{i} & =\left[\mathbf{A}^{-1} \mathbf{b}\right]_{i} \\
& =\frac{1}{\operatorname{det}(\mathbf{A})}[(\operatorname{adj} \mathbf{A}) \mathbf{b}]_{i} \\
& =\frac{1}{\operatorname{det}(\mathbf{A})} \sum_{l=1}^{n} A_{l i} b_{l} \\
& =\frac{1}{\operatorname{det}(\mathbf{A})}\left|\begin{array}{ccccc}
a_{11} & \cdots & b_{1} & \cdots & a_{1 n} \\
a_{21} & \cdots & b_{2} & \cdots & a_{2 n} \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
a_{n 1} & \cdots & b_{n} & \cdots & a_{n n}
\end{array}\right|
\end{aligned}
$$

## Example

Use Cramer's rule to solve the linear system

$$
\left\{\begin{array}{c}
x_{1}+4 x_{2}+5 x_{3}=2 \\
4 x_{1}+2 x_{2}+5 x_{3}=3 \\
-3 x_{1}+3 x_{2}-x_{3}=1
\end{array}\right.
$$

Solution: Let $\mathbf{A}=\left(\begin{array}{ccc}1 & 4 & 5 \\ 4 & 2 & 5 \\ -3 & 3 & -1\end{array}\right)$.

$$
\begin{aligned}
\operatorname{det}(\mathbf{A}) & =1\left|\begin{array}{cc}
2 & 5 \\
3 & -1
\end{array}\right|-4\left|\begin{array}{cc}
4 & 5 \\
-3 & -1
\end{array}\right|+5\left|\begin{array}{cc}
4 & 2 \\
-3 & 3
\end{array}\right| \\
& =1(-17)-4(11)+5(18) \\
& =29
\end{aligned}
$$

Thus by Cramer's rule,

$$
\begin{aligned}
& x_{1}=\frac{1}{29}\left|\begin{array}{ccc}
2 & 4 & 5 \\
3 & 2 & 5 \\
1 & 3 & -1
\end{array}\right|=\frac{33}{29} \\
& x_{2}=\frac{1}{29}\left|\begin{array}{ccc}
1 & 2 & 5 \\
4 & 3 & 5 \\
-3 & 1 & -1
\end{array}\right|=\frac{35}{29} \\
& x_{3}=\frac{1}{29}\left|\begin{array}{ccc}
1 & 4 & 2 \\
4 & 2 & 3 \\
-3 & 3 & 1
\end{array}\right|=-\frac{23}{29}
\end{aligned}
$$



## Theorem

Let $n$ be a non-negative integer, and $\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right), \cdots,\left(x_{n}, y_{n}\right)$ be $n+1$ points in $\mathbb{R}^{2}$ such that $x_{i} \neq x_{j}$ for any $i \neq j$. Then there exists unique polynomial

$$
p(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}
$$

of degree at most $n$ such that $p\left(x_{i}\right)=y_{i}$ for all $0 \leq i \leq n$. The coefficients of $p(x)$ satisfy the linear system

$$
\left(\begin{array}{ccccc}
1 & x_{0} & x_{0}^{2} & \cdots & x_{0}^{n} \\
1 & x_{1} & x_{1}^{2} & \cdots & x_{1}^{n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & x_{n} & x_{n}^{2} & \cdots & x_{n}^{n}
\end{array}\right)\left(\begin{array}{c}
a_{0} \\
a_{1} \\
\vdots \\
a_{n}
\end{array}\right)=\left(\begin{array}{c}
y_{0} \\
y_{1} \\
\vdots \\
y_{n}
\end{array}\right) .
$$

## Theorem

Moreover, we can write down the polynomial function $y=p(x)$ directly as

$$
\left|\begin{array}{cccccc}
1 & x & x^{2} & \cdots & x^{n} & y \\
1 & x_{0} & x_{0}^{2} & \cdots & x_{0}^{n} & y_{0} \\
1 & x_{1} & x_{1}^{2} & \cdots & x_{1}^{n} & y_{1} \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
1 & x_{n} & x_{n}^{2} & \cdots & x_{n}^{n} & y_{n}
\end{array}\right|=0 .
$$

## Proof.

Expanding the determinant, one sees that the equation is of the form $y=p(x)$ where $p(x)$ is a polynomial of degree at most $n$. Observe that the determinant is zero when $(x, y)=\left(x_{i}, y_{i}\right)$ for some $0 \leq i \leq n$ since two rows would be identical in this case. Now it is well known that such polynomial is unique.

## Example

Find the equation of straight line passes through the points $\left(x_{0}, y_{0}\right)$ and $\left(x_{1}, y_{1}\right)$.

Solution: The equation of the required straight line is

$$
\begin{aligned}
\left|\begin{array}{ccc}
1 & x & y \\
1 & x_{0} & y_{0} \\
1 & x_{1} & y_{1}
\end{array}\right| & =0 \\
\left(y_{0}-y_{1}\right) x+\left(x_{1}-x_{0}\right) y+\left(x_{0} y_{1}-x_{1} y_{0}\right) & =0
\end{aligned}
$$

## Example

Find the cubic polynomial that interpolates the data points $(-1,4),(1,2),(2,1)$ and $(3,16)$.

Solution: The required equation is

$$
\left|\begin{array}{ccccc}
1 & x & x^{2} & x^{3} & y \\
1 & -1 & 1 & -1 & 4 \\
1 & 1 & 1 & 1 & 2 \\
1 & 2 & 4 & 8 & 1 \\
1 & 3 & 9 & 27 & 16
\end{array}\right|=0
$$

$$
\begin{aligned}
& \left|\begin{array}{ccccc}
1 & x & x^{2} & x^{3} & y \\
1 & -1 & 1 & -1 & 4 \\
0 & 2 & 0 & 2 & -2 \\
0 & 3 & 3 & 9 & -3 \\
0 & 4 & 8 & 28 & 12
\end{array}\right|=0 \\
& \\
& \vdots \\
& \left|\begin{array}{ccccc}
1 & x & x^{2} & x^{3} & y \\
1 & 0 & 0 & 0 & 7 \\
0 & 1 & 0 & 0 & -3 \\
0 & 0 & 1 & 0 & -4 \\
0 & 0 & 0 & 1 & 2
\end{array}\right|=0 \\
& -7+3 x+4 x^{2}-2 x^{3}+y
\end{aligned} \begin{aligned}
& =0 \\
& -7
\end{aligned} \begin{aligned}
& =7-3 x-4 x^{2}+2 x^{3}
\end{aligned}
$$

## Example

Find the equation of the circle determined by the points $(-1,5),(5,-3)$ and $(6,4)$.
Solution: The equation of the required circle is

$$
\begin{aligned}
& \left.\begin{array}{cccc}
x^{2}+y^{2} & x & y & 1 \\
(-1)^{2}+5^{2} & -1 & 5 & 1 \\
5^{2}+(-3)^{2} & 5 & -3 & 1 \\
6^{2}+4^{2} & 6 & 4 & 1
\end{array} \right\rvert\,=0 \\
& \left.\begin{array}{cccc}
x^{2}+y^{2} & x & y & 1 \\
26 & -1 & 5 & 1 \\
34 & 5 & -3 & 1 \\
52 & 6 & 4 & 1
\end{array} \right\rvert\,=0 \\
& \left|\begin{array}{cccc}
x^{2}+y^{2} & x & y & 1 \\
20 & 0 & 0 & 1 \\
4 & 1 & 0 & 0 \\
2 & 0 & 1 & 0
\end{array}\right|=0 \\
& x^{2}+y^{2}-4 x-2 y-20=0
\end{aligned}
$$

