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System of m linear equations in n unknowns (linear system)
a11x1 + a12x2 + · · · + a1nxn = b1

a21x1 + a22x2 + · · · + a2nxn = b2
...

...
. . .

... =
...

am1x1 + am2x2 + · · · + amnxn = bm

.

Matrix form
a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn




x1

x2
...

xn

 =


b1

b2
...

bm

 .
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Augmented matrix
a11 a12 · · · a1n b1

a21 a22 · · · a2n b2
...

...
. . .

...
...

am1 am2 · · · amn bm
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Definition

An elementary row operation is an operation on a matrix of one
of the following form.

1 Multiply a row by a non-zero constant.

2 Interchange two rows.

3 Replace a row by its sum with a multiple of another row.
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Definition

Two matrices A and B are said to be row equivalent if we can
use elementary row operations to get B from A.

Proposition

If the augmented matrices of two linear systems are row
equivalent, then the two systems are equivalent, i.e., they have the
same solution set.
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Definition

A matrix E is said to be in row echelon form if

1 The first nonzero entry of each row of E is 1.

2 Every row of E that consists entirely of zeros lies beneath
every row that contains a nonzero entry.

3 In each row of E that contains a nonzero entry, the number of
leading zeros is strictly less than that in the preceding row.

Proposition

Any matrix can be transformed into row echelon form by
elementary row operations. This process is called Gaussian
elimination.

Linear Systems and Matrices



Linear Systems and Matrices

Row Echelon Form
Matrix Operations
Inverse of matrices
Determinants
Linear Equations and Curve Fitting

Row echelon form of augmented matrix.

Those variables that correspond to columns containing leading
entries are called leading variables

All the other variables are called free variables.

A system in row echelon form can be solved easily by back
substitution.
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Example

Solve the linear system
x1 + x2 − x3 = 5

2x1 − x2 + 4x3 = −2
x1 − 2x2 + 5x3 = −4

.
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Solution:

 1 1 −1 5
2 −1 4 −2
1 −2 5 −4

 R2 → R2 − 2R1
R3 → R3 − R1−→

 1 1 −2 5
0 −3 6 −12
0 −3 6 −9


R2→−

1
3

R2
−→

 1 1 −2 5
0 1 −2 4
0 −3 6 −9

 R3→R3+3R2−→

 1 1 −2 5
0 1 −2 4
0 0 0 3



The third row of the last matrix corresponds to the equation

0 = 3

which is absurd. Therefore the solution set is empty and the
system is inconsistent. �
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Example

Solve the linear system
x1 + x2 + x3 + x4 + x5 = 2
x1 + x2 + x3 + 2x4 + 2x5 = 3
x1 + x2 + x3 + 2x4 + 3x5 = 2

.

Solution:

 1 1 1 1 1 2
1 1 1 2 2 3
1 1 1 2 3 2

 R2 → R2 − R1
R3 → R3 − R1−→

 1 1 1 1 1 2
0 0 0 1 1 1
0 0 0 1 2 0


R3→R3−R2−→

 1 1 1 1 1 2
0 0 0 1 1 1
0 0 0 0 1 −1
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Thus the system is equivalent to the following system x1 + x2 + x3 + x4 + x5 = 2
x4 + x5 = 1

x5 = −1
.

The solution of the system is x5 = −1
x4 = 1− x5 = 2
x1 = 2− x2 − x3 − x4 − x5 = 1− x2 − x3

Here x1, x4, x5 are leading variables while x2, x3 are free variables.
Another way of expressing the solution is

(x1, x2, x3, x4, x5) = (1− α− β, α, β, 2,−1), α, β ∈ R.

�
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Definition

A matrix E is said to be in reduced row echelon form (or E is a
reduced row echelon matrix) if it satisfies all the following
properties:

1 It is in row echelon form.

2 Each leading entry of E is the only nonzero entry in its
column.

Proposition

Every matrix is row equivalent to one and only one matrix in
reduced row echelon form.
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Example

Find the reduced row echelon form of the matrix 1 2 1 4
3 8 7 20
2 7 9 23

 .

Solution:

 1 2 1 4
3 8 7 20
2 7 9 23

 R2 → R2 − 3R1
R3 → R3 − 2R1−→

 1 2 1 4
0 2 4 8
0 3 7 15


R2→

1
2

R2
−→

 1 2 1 4
0 1 2 4
0 3 7 15

 R3→R3−3R2−→

 1 2 1 4
0 1 2 4
0 0 1 3



R1→R1−2R2−→

 1 0 −3 −4
0 1 2 4
0 0 1 3

 R1 → R1 + 3R3
R2 → R2 − 2R3−→

 1 0 0 5
0 1 0 −2
0 0 1 3


�
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Example

Solve the linear system
x1 + 2x2 + 3x3 + 4x4 = 5
x1 + 2x2 + 2x3 + 3x4 = 4
x1 + 2x2 + x3 + 2x4 = 3

.
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Solution:

 1 2 3 4 5
1 2 2 3 4
1 2 1 2 3

 R2 → R2 − R1
R3 → R3 − R1−→

 1 2 3 4 5
0 0 −1 −1 −1
0 0 −2 −2 −2


R2→−R2−→

 1 2 3 4 5
0 0 1 1 1
0 0 −2 −2 −2

 R3→R3+2R2−→

 1 2 3 4 5
0 0 1 1 1
0 0 0 0 0


R1→R1−3R2−→

 1 2 0 1 2
0 0 1 1 1
0 0 0 0 0



Now x1, x3 are leading variables while x2, x4 are free variables. The
solution of the system is

(x1, x2, x3, x4) = (2− 2α− β, α, 1− β, β), α, β ∈ R.

�
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Theorem

Let
Ax = b

be a linear system, where A is an m × n matrix. Let R be the
unique m × (n + 1) reduced row echelon matrix of the augmented
matrix (A|b). Then the system has

1 no solution if the last column of R contains a leading entry.

2 unique solution if (1) does not holds and all variables are
leading variables.

3 infinitely many solutions if (1) does not holds and there exists
at least one free variables.
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Theorem

Let A be an n × n matrix. Then homogeneous linear system

Ax = 0

with coefficient matrix A has only trivial solution if and only if A is
row equivalent to the identity matrix I.
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Definition

We define the following operations for matrices.

1 Addition: Let A = [aij ] and B = [bij ] be two m × n matrices. Define

[A+ B]ij = aij + bij .

That is 
a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn

+


b11 b12 · · · b1n

b21 b22 · · · b2n

...
...

. . .
...

bm1 bm2 · · · bmn



=


a11 + b11 a12 + b12 · · · a1n + b1n

a21 + b21 a22 + b22 · · · a2n + b2n

...
...

. . .
...

am1 + bm1 am2 + bm2 · · · amn + bmn

 .
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Definition

2 Scalar multiplication: Let A = [aij ] be an m × n matrix and
c be a scalar. Then

[cA]ij = caij .

That is

c


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

 =


ca11 ca12 · · · ca1n

ca21 ca22 · · · ca2n
...

...
. . .

...
cam1 cam2 · · · camn

 .
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Definition

3 Matrix multiplication: Let A = [aij ] be an m × n matrix and
B = [bjk ] be an n × r . Then their matrix product AB is an
m × r matrix where

[AB]ik =
n∑

j=1

aij bjk = ai1b1k + ai2b2k + · · ·+ ainbnk .

For example: If A is a 3× 2 matrix and B is a 2× 2 matrix,
then a11 a12

a21 a22

a31 a32

( b11 b12

b21 b22

)
=

 a11b11 + a12b21 a11b12 + a12b22

a21b11 + a22b21 a21b12 + a22b22

a31b11 + a32b21 a31b12 + a32b22


is a 3× 2 matrix.
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1 A zero matrix, denoted by 0, is a matrix whose entries are all
zeros.

2 An identity matrix, denoted by I, is a square matrix that has
ones on its principal diagonal and zero elsewhere.
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Theorem (Properties of matrix algebra)

Let A, B and C be matrices of appropriate sizes to make the
indicated operations possible and a, b be real numbers, then
following identities hold.

1 A + B = B + A

2 A + (B + C) = (A + B) + C

3 A + 0 = 0 + A = A

4 a(A + B) = aA + aB

5 (a + b)A = aA + bA

6 a(bA) = (ab)A

7 a(AB) = (aA)B = A(aB)

8 A(BC) = (AB)C

9 A(B + C) = AB + AC

10 (A + B)C = AC + BC

11 A0 = 0A = 0

12 AI = IA = A
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Proof.

We only prove (8) and the rest are obvious. Let A = [aij ] be
m × n, B = [bjk ] be n × r and C = [ckl ] be r × s matrices. Then

[(AB)C]il =
r∑

k=1

[AB]ik ckl

=
r∑

k=1

(
n∑

j=1

aij bjk

)
ckl

=
n∑

j=1

aij

(
r∑

k=1

bjk ckl

)

=
n∑

j=1

aij [BC]jl

= [A(BC)]il
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Remarks:

1 In general, AB 6= BA. For example:

A =

(
1 1
0 1

)
and B =

(
1 0
0 2

)
Then

AB =

(
1 1
0 1

)(
1 0
0 2

)
=

(
1 2
0 2

)
BA =

(
1 0
0 2

)(
1 1
0 1

)
=

(
1 1
0 2

)
2 AB = 0 does not implies that A = 0 or B = 0. For example:

A =

(
1 0
0 0

)
6= 0 and B =

(
0 0
0 1

)
6= 0

But

AB =

(
1 0
0 0

)(
0 0
0 1

)
=

(
0 0
0 0

)
.

Linear Systems and Matrices



Linear Systems and Matrices

Row Echelon Form
Matrix Operations
Inverse of matrices
Determinants
Linear Equations and Curve Fitting

Definition

Let A = [aij ] be an m × n matrix. Then the transpose of A is the
n ×m matrix defined by interchanging rows and columns and is
denoted by AT , i.e.,

[AT ]ji = aij for 1 ≤ j ≤ n, 1 ≤ i ≤ m.

Example

1

(
2 0 5
4 −1 7

)T

=

 2 4
0 −1
5 7


2

 7 −2 6
1 2 3
5 0 4

T

=

 7 1 5
−2 2 0
6 3 4


�Linear Systems and Matrices
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Theorem (Properties of transpose)

For any m × n matrices A and B,

1 (AT )T = A;

2 (A + B)T = AT + BT ;

3 (cA)T = cAT ;

4 (AB)T = BTAT .
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Definition

A square matrix A is said to be invertible, if there exists a matrix
B such that

AB = BA = I.

We say that B is a (multiplicative) inverse of A.
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Theorem

If A is invertible, then the inverse of A is unique.

Proof.

Suppose B1 and B2 are multiplicative inverses of A. Then

B2 = B2I = B2(AB1) = (B2A)B1 = IB1 = B1.

The unique inverse of A is denoted by A−1.
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Proposition

The 2× 2 matrix

A =

(
a b
c d

)
is invertible if and only if ad − bc 6= 0, in which case

A−1 =
1

ad − bc

(
d −b
−c a

)
.
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Proposition

Let A and B be two invertible n × n matrices.

1 A−1 is invertible and (A−1)−1 = A;

2 For any nonnegative integer k, Ak is invertible and
(Ak )−1 = (A−1)k ;

3 The product AB is invertible and

(AB)−1 = B−1A−1;

4 AT is invertible and

(AT )−1 = (A−1)T .
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Proof.

We prove (3) only.

(AB)(B−1A−1) = A(BB−1)A−1 = AIA−1 = AA−1 = I
(B−1A−1)(AB) = B−1(A−1A)B = B−1IB = B−1B = I

Therefore AB is invertible and B−1A−1 is the inverse of AB.
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Theorem

If the n × n matrix A is invertible, then for any n-vector b the
system Ax = b has the unique solution x = A−1b.
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Example

Solve the system {
4x1 + 6x2 = 6
5x1 + 9x2 = 18

.

Solution: Let A =

(
4 6
5 9

)
. Then

A−1 =
1

(4)(9)− (5)(6)

(
9 −6
−5 4

)
=

(
3
2
−1

− 5
6

2
3

)
Thus the solution is

x = A−1b =

(
3
2
−1

− 5
6

2
3

)(
6
18

)
=

(
−9
7

)
Therefore (x1, x2) = (−9, 7). �
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Definition

A square matrix E is called an elementary matrix if it can be
obtained by performing a single elementary row operation on I.

Proposition

Let E be the elementary matrix obtained by performing a certain
elementary row operation on I. Then the result of performing the
same elementary row operation on a matrix A is EA.

Proposition

Every elementary matrix is invertible.
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Example
Examples of elementary matrices associated to elementary row operations and their inverses.

Elementary
row operation

Interchanging
two rows

Multiplying a row
by a nonzero constant

Adding a multiple of
a row to another row

Elementary matrix

 1 0 0
0 0 1
0 1 0

  1 0 0
0 1 0
0 0 3

  1 0 −2
0 1 0
0 0 1



Inverse

 1 0 0
0 0 1
0 1 0

  1 0 0
0 1 0

0 0 1
3

  1 0 2
0 1 0
0 0 1
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Theorem

Let A be a square matrix. Then the following statements are
equivalent.

1 A is invertible

2 A is row equivalent to I

3 A is a product of elementary matrices

Proof.

It follows easily from the fact that an n × n reduced row echelon
matrix is invertible if and only if it is the identity matrix I.
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Let A be an invertible matrix. Then the above theorem tells us
that there exists elementary matrices E1,E2, · · · ,Ek such that

EkEk−1 · · ·E2E1A = I.

Multiplying both sides by (E1)−1(E2)−1 · · · (Ek−1)−1(Ek )−1 we
have

A = (E1)−1(E2)−1 · · · (Ek−1)−1(Ek )−1.

Therefore
A−1 = EkEk−1 · · ·E2E1

by Proposition 3.4.
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Theorem

Let A be a square matrix. Suppose we can preform elementary row
operation to the augmented matrix (A|I) to obtain a matrix of the
form (I|E), then A−1 = E.

Proof.

Let E1,E2, · · · ,Ek be elementary matrices such that

EkEk−1 · · ·E2E1(A|I) = (I|E).

Then the multiplication on the left submatrix gives

EkEk−1 · · ·E2E1A = I

and the multiplication of the right submatrix gives

E = EkEk−1 · · ·E2E1I = A−1.
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Example

Find the inverse of  4 3 2
5 6 3
3 5 2


Solution:  4 3 2

5 6 3
3 5 2

1 0 0
0 1 0
0 0 1


R1→R1−R3−→

 1 −2 0
5 6 3
3 5 2

1 0 −1
0 1 0
0 0 1


R2 → R2 − 5R1
R3 → R3 − 3R1−→

 1 −2 0
0 16 3
0 11 2

1 0 −1
−5 1 5
−3 0 4
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R2→R2−R3−→

 1 −2 0
0 5 1
0 11 2

1 0 −1
−2 1 1
−3 0 4


R3→R3−2R2−→

 1 −2 0
0 5 1
0 1 0

1 0 −1
−2 1 1
1 −2 2


R2↔R3−→

 1 −2 0
0 1 0
0 5 1

1 0 −1
1 −2 2
−2 1 1


R3→R3−5R2−→

 1 −2 0
0 1 0
0 0 1

1 0 −1
1 −2 2
−7 11 −9


R1→R1+2R2−→

 1 0 0
0 1 0
0 0 1

3 −4 3
1 −2 2
−7 11 −9


Therefore

A−1 =

 3 −4 3
1 −2 2
−7 11 −9

 .

�
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Example

Find a 3× 2 matrix X such that 1 2 3
2 1 2
1 3 4

X =

 0 −3
−1 4
2 1

 .

Solution:  1 2 3
2 1 2
1 3 4

0 −3
−1 4
2 1


R2 → R2 − 5R1

R3 → R3 − 3R1
−→

 1 2 3
0 −3 −4
0 1 1

0 −3
−1 10
2 4


R2↔R3−→

 1 2 3
0 1 1
0 −3 −4

0 −3
2 4
−1 10
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R3→R3+3R2−→

 1 2 3
0 1 1
0 0 −1

0 −3
2 4
5 22


R3 → −R3
−→

 1 2 3
0 1 1
0 0 1

0 −3
2 4
−5 −22


R1 → R1 − 3R3

R2 → R2 − R3
−→

 1 2 0
0 1 0
0 5 1

15 63
7 26
−5 −22


R1 → R1 − 2R2

−→

 1 0 0
0 1 0
0 0 1

1 11
7 26
−5 −22


Therefore we may take

X =

 1 11
7 26
−5 −22

 .

�
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Definition

Let A = [aij ] be an n × n matrix.

1 The ij-th minor of A is the determinant Mij of the
(n − 1)× (n − 1) submatrix that remains after deleting the
i-th row and the j-th column of A.

2 The ij-th cofactor of A is defined by

Aij = (−1)i+j Mij .
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Definition

Let A = [aij ] be an n× n matrix. The determinant det(A) of A is
defined inductively as follow.

1 If n = 1, then det(A) = a11.

2 If n > 1, then

det(A) =
n∑

k=1

a1k A1k = a11A11 + a12A12 + · · ·+ a1nA1n,

where Aij is the ij-th cofactor of A.
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Example

When n = 1, 2 or 3, we have the following.

1 The determinant of a 1× 1 matrix is

|a11| = a11

2 The determinant of a 2× 2 matrix is∣∣∣∣ a11 a12

a21 a22

∣∣∣∣ = a11a22 − a12a21

3 The determinant of a 3× 3 matrix is∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣ = a11

∣∣∣∣ a22 a23

a32 a33

∣∣∣∣− a12

∣∣∣∣ a21 a23

a31 a33

∣∣∣∣+ a13

∣∣∣∣ a21 a22

a31 a32

∣∣∣∣

Linear Systems and Matrices



Linear Systems and Matrices

Row Echelon Form
Matrix Operations
Inverse of matrices
Determinants
Linear Equations and Curve Fitting

Example ∣∣∣∣∣∣∣∣
4 3 0 1
3 2 0 1
1 0 0 3
0 1 2 1

∣∣∣∣∣∣∣∣
= 4

∣∣∣∣ 2 0 1
0 0 3
1 2 1

∣∣∣∣− 3

∣∣∣∣ 3 0 1
1 0 3
0 2 1

∣∣∣∣+ 0

∣∣∣∣ 3 2 1
1 0 3
0 1 1

∣∣∣∣− 1

∣∣∣∣ 3 2 0
1 0 0
0 1 2

∣∣∣∣
= 4

(
2

∣∣∣∣ 0 3
2 1

∣∣∣∣− 0

∣∣∣∣ 0 3
1 1

∣∣∣∣+ 1

∣∣∣∣ 0 0
1 2

∣∣∣∣)
−3

(
3

∣∣∣∣ 0 3
2 1

∣∣∣∣− 0

∣∣∣∣ 1 3
0 1

∣∣∣∣+ 1

∣∣∣∣ 1 0
0 2

∣∣∣∣)
−
(

3

∣∣∣∣ 0 0
1 2

∣∣∣∣− 2

∣∣∣∣ 1 0
0 2

∣∣∣∣+ 0

∣∣∣∣ 1 0
0 1

∣∣∣∣)
= 4 (2(−6))− 3 (3(−6) + 1(2))− (−2(2))

= 4
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Theorem

Let A = [aij ] be an n × n matrix. Then

det(A) =
∑
σ∈Sn

sign(σ)a1σ(1)a2σ(2) · · · anσ(n),

where Sn is the set of all permutations of {1, 2, · · · , n} and

sign(σ) =

{
1 if σ is an even permutation,
−1 if σ is an odd permutation.

Linear Systems and Matrices



Linear Systems and Matrices

Row Echelon Form
Matrix Operations
Inverse of matrices
Determinants
Linear Equations and Curve Fitting

1 There are n! number of terms for an n × n determinant.

2 Here we write down the 4! = 24 terms of a 4× 4 determinant.∣∣∣∣∣∣∣∣
a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

∣∣∣∣∣∣∣∣
=

a11a22a33a44 − a11a22a34a43 − a11a23a32a44 + a11a23a34a42

+a11a24a32a43 − a11a24a33a42 − a12a21a33a44 + a12a21a34a43

+a12a23a31a44 − a12a23a34a41 − a12a24a31a43 + a12a24a33a41

+a13a21a32a44 − a13a21a34a42 − a13a22a31a44 + a13a22a34a41

+a13a24a31a42 − a13a24a32a41 − a14a21a32a43 + a14a21a33a42

+a14a22a31a43 − a14a22a33a41 − a14a23a31a42 + a14a23a32a41
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Theorem

The determinant of an n × n matrix A = [aij ] can be obtained by
expansion along any row or column, i.e., for any 1 ≤ i ≤ n, we have

det(A) = ai1Ail + ai2Ai2 + · · ·+ ainAin

and for any 1 ≤ j ≤ n, we have

det(A) = a1j A1j + a2j A2j + · · ·+ anj Anj .
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Example

We can expand the determinant along the third column.∣∣∣∣∣∣∣∣
4 3 0 1
3 2 0 1
1 0 0 3
0 1 2 1

∣∣∣∣∣∣∣∣ = −2

∣∣∣∣∣∣
4 3 1
3 2 1
1 0 3

∣∣∣∣∣∣
= −2

(
−3

∣∣∣∣ 3 1
1 3

∣∣∣∣+ 2

∣∣∣∣ 4 1
1 3

∣∣∣∣)
= −2 (−3(8) + 2(11))

= 4
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Proposition

Properties of determinant.

1 det(I) = 1;

2 Suppose that the matrices A1, A2 and B are identical except
for their i -th row (or column) and that the i-th row (or
column) of B is the sum of the i-th row (or column) of A1

and A2, then det(B) = det(A1) + det(A2);

3 If B is obtained from A by multiplying a single row (or
column) of A by the constant k, then det(B) = k det(A);

4 If B is obtained from A by interchanging two rows (or
columns), then det(B) = − det(A);
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Proposition

5 If B is obtained from A by adding a constant multiple of one row
(or column) of A to another row (or column) of A, then
det(B) = det(A);

6 If two rows (or columns) of A are identical, then det(A) = 0;

7 If A has a row (or column) consisting entirely of zeros, then
det(A) = 0;

8 det(AT ) = det(A);

9 If A is a triangular matrix, then det(A) is the product of the
diagonal elements of A;

10 det(AB) = det(A) det(B).
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Example

∣∣∣∣∣∣
2 2 5 5
1 −2 4 1
−1 2 −2 −2
−2 7 −3 2

∣∣∣∣∣∣ =

∣∣∣∣∣∣
0 6 −3 3
1 −2 4 1
0 0 2 −1
0 3 5 4

∣∣∣∣∣∣
(

R1 → R1 − 2R2

R3 → R3 + R2

R4 → R4 + 2R2

)

= −

∣∣∣∣∣∣
6 −3 3
0 2 −1
3 5 4

∣∣∣∣∣∣
= −3

∣∣∣∣∣∣
2 −1 1
0 2 −1
3 5 4

∣∣∣∣∣∣
= −3

(
2

∣∣∣∣ −1 1
5 4

∣∣∣∣+ 3

∣∣∣∣ −1 1
2 −1

∣∣∣∣)
= −69
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Example

∣∣∣∣∣∣
2 2 5 5
1 −2 4 1
−1 2 −2 −2
−2 7 −3 2

∣∣∣∣∣∣ =

∣∣∣∣∣∣
2 6 −3 3
1 0 0 0
−1 0 2 −1
−2 3 5 4

∣∣∣∣∣∣
(

C2 → C2 + 2C1

C3 → C3 − 4C1

C4 → C4 − C1

)

= −

∣∣∣∣∣∣
6 −3 3
0 2 −1
3 5 4

∣∣∣∣∣∣
= −

∣∣∣∣∣∣
0 0 3
2 1 −1
−5 9 4

∣∣∣∣∣∣
(

C1 → C1 − 2C3

C2 → C2 + C3

)

= −3

∣∣∣∣ 2 1
−5 9

∣∣∣∣
= −69
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Example

Let α1, α2, · · · , αn be real numbers and

A =


1 α1 α2 · · · αn

1 x α2 · · · αn

1 α1 x · · · αn

...
...

...
. . .

...
1 α1 α2 · · · x

 .

Show that
det(A) = (x − α1)(x − α2) · · · (x − αn).

Solution: Note that A is an (n + 1)× (n + 1) matrix. For simplicity we assume that
α1, α2, · · · , αn are distinct. Observe that we have the following 3 facts.

1 det(A) is a polynomial of degree n in x ;

2 det(A) = 0 when x = αi for some i ;

3 The coefficient of xn of det(A) is 1.

Then the equality follows by the factor theorem. �
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Example

The Vandermonde determinant is defined as

V (x1, x2, · · · , xn) =

∣∣∣∣∣∣∣∣∣∣
1 x1 x2

1 · · · xn−1
1

1 x2 x2
2 · · · xn−1

2
...

...
...

. . .
...

1 xn x2
n · · · xn−1

n

∣∣∣∣∣∣∣∣∣∣
.

Show that
V (x1, x2, · · · , xn) =

∏
1≤i<j≤n

(xj − xi ).

Solution: Using factor theorem, the equality is a consequence of the following 3 facts.

1 V (x1, x2, · · · , xn) is a polynomial of degree n(n − 1)/2 in x1, x2, · · · , xn;

2 For any i 6= j , V (x1, x2, · · · , xn) = 0 when xi = xj ;

3 The coefficient of x2x2
3 · · · x

n−1
n of V (x1, x2, · · · , xn) is 1.
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Lemma

Let A = [aij ] be an n × n matrix and E be an n × n elementary
matrix. Then

det(EA) = det(E) det(A).

Definition

Let A be a square matrix. We say that A is singular if the system
Ax = 0 has non-trivial solution. A square matrix is nonsingular if
it is not singular.
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Theorem

The following properties of an n × n matrix A are equivalent.

1 A is nonsingular, i.e., the system Ax = 0 has only trivial
solution x = 0.

2 A is invertible, i.e., A−1 exists.

3 det(A) 6= 0.

4 A is row equivalent to I.

5 For any n-column vector b, the system Ax = b has a unique
solution.

6 For any n-column vector b, the system Ax = b has a solution.
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Proof.

We prove (3)⇔(4) and leave the rest as an exercise. Multiply
elementary matrices E1,E2, · · · ,Ek to A so that

R = EkEk−1 · · ·E1A

is in reduced row echelon form. Then by the lemma above, we have

det(R) = det(Ek ) det(Ek−1) · · · det(E1) det(A).

Since determinant of elementary matrices are always nonzero, we
have det(A) is nonzero if and only if det(R) is nonzero. It is easy
to see that the determinant of a reduced row echelon matrix is
nonzero if and only if it is the identity matrix I.
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Theorem

Let A and B be two n × n matrices. Then

det(AB) = det(A) det(B).

Proof.

If A is not invertible, then AB is not invertible and
det(AB) = 0 = det(A) det(B). If A is invertible, then there exists
elementary matrices E1,E2, · · · ,Ek such that EkEk−1 · · ·E1 = A. Hence

det(AB) = det(EkEk−1 · · ·E1B)

= det(Ek ) det(Ek−1) · · · det(E1) det(B)

= det(EkEk−1 · · ·E1) det(B)

= det(A) det(B).
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Definition

Let A be a square matrix. The adjoint matrix of A is

adjA = [Aij ]
T ,

where Aij is the ij-th cofactor of A. In other words,

[adjA]ij = Aji .
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Theorem

Let A be a square matrix. Then

AadjA = (adjA)A = det(A)I,

where adjA is the adjoint matrix. In particular if A is invertible,
then

A−1 =
1

det(A)
adjA.
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Proof.

The second statement follows easily from the first. For the first
statement, we have

[AadjA]ij =
n∑

l=1

ail [adjA]lj

=
n∑

l=1

ail Ajl

= δij det(A)

where

δij =

{
1, i = j
0, i 6= j

.

Therefore AadjA = det(A)I and similarly (adjA)A = det(A)I.
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Example

Let A =

 4 3 2
5 6 3
3 5 2

. We have

det(A) = 4

∣∣∣∣ 6 3
5 2

∣∣∣∣− 3

∣∣∣∣ 5 3
3 2

∣∣∣∣+ 2

∣∣∣∣ 5 6
3 5

∣∣∣∣ = 4(−3)− 3(1) + 2(7) = −1,

adjA =



∣∣∣∣ 6 3
5 2

∣∣∣∣ −
∣∣∣∣ 3 2

5 2

∣∣∣∣ ∣∣∣∣ 3 2
6 3

∣∣∣∣
−
∣∣∣∣ 5 3

3 2

∣∣∣∣ ∣∣∣∣ 4 2
3 2

∣∣∣∣ −
∣∣∣∣ 4 2

5 3

∣∣∣∣∣∣∣∣ 5 6
3 5

∣∣∣∣ −
∣∣∣∣ 4 3

3 5

∣∣∣∣ ∣∣∣∣ 4 3
5 6

∣∣∣∣


=

 −3 4 −3
−1 2 −2
7 −11 9

 .

Therefore

A−1 =
1

−1

 −3 4 −3
−1 2 −2
7 −11 9

 =

 3 −4 3
1 −2 2
−7 11 −9

 .
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Theorem (Cramer’s rule)

Consider the n × n linear system Ax = b, with

A =
[
a1 a2 · · · an

]
.

If det(A) 6= 0, then the i-th entry of the unique solution
x = (x1, x2, · · · , xn) is

xi = det(A)−1 det(
[
a1 · · · ai−1 b ai+1 · · · an

]
),

where the matrix in the last factor is obtained by replacing the i-th
column of A by b.
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Proof.

xi = [A−1b]i

=
1

det(A)
[(adjA)b]i

=
1

det(A)

n∑
l=1

Ali bl

=
1

det(A)

∣∣∣∣∣∣∣∣∣
a11 · · · b1 · · · a1n

a21 · · · b2 · · · a2n
...

. . .
...

. . .
...

an1 · · · bn · · · ann

∣∣∣∣∣∣∣∣∣
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Example

Use Cramer’s rule to solve the linear system
x1 + 4x2 + 5x3 = 2

4x1 + 2x2 + 5x3 = 3
−3x1 + 3x2 − x3 = 1

.

Solution: Let A =

 1 4 5
4 2 5
−3 3 −1

.

det(A) = 1

∣∣∣∣ 2 5
3 −1

∣∣∣∣− 4

∣∣∣∣ 4 5
−3 −1

∣∣∣∣+ 5

∣∣∣∣ 4 2
−3 3

∣∣∣∣
= 1(−17)− 4(11) + 5(18)
= 29.
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Thus by Cramer’s rule,

x1 =
1

29

∣∣∣∣∣∣
2 4 5
3 2 5
1 3 −1

∣∣∣∣∣∣ =
33

29

x2 =
1

29

∣∣∣∣∣∣
1 2 5
4 3 5
−3 1 −1

∣∣∣∣∣∣ =
35

29

x3 =
1

29

∣∣∣∣∣∣
1 4 2
4 2 3
−3 3 1

∣∣∣∣∣∣ = −23

29
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Theorem

Let n be a non-negative integer, and (x0, y0), (x1, y1), · · · , (xn, yn)
be n + 1 points in R2 such that xi 6= xj for any i 6= j . Then there
exists unique polynomial

p(x) = a0 + a1x + a2x2 + · · ·+ anxn,

of degree at most n such that p(xi ) = yi for all 0 ≤ i ≤ n. The
coefficients of p(x) satisfy the linear system

1 x0 x2
0 · · · xn

0

1 x1 x2
1 · · · xn

1
...

...
...

. . .
...

1 xn x2
n · · · xn

n




a0

a1
...

an

 =


y0

y1
...

yn

 .
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Theorem

Moreover, we can write down the polynomial function y = p(x)
directly as ∣∣∣∣∣∣∣∣∣∣∣

1 x x2 · · · xn y
1 x0 x2

0 · · · xn
0 y0

1 x1 x2
1 · · · xn

1 y1

...
...

...
. . .

...
...

1 xn x2
n · · · xn

n yn

∣∣∣∣∣∣∣∣∣∣∣
= 0.

Proof.

Expanding the determinant, one sees that the equation is of the
form y = p(x) where p(x) is a polynomial of degree at most n.
Observe that the determinant is zero when (x , y) = (xi , yi ) for
some 0 ≤ i ≤ n since two rows would be identical in this case.
Now it is well known that such polynomial is unique.
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Example

Find the equation of straight line passes through the points (x0, y0)
and (x1, y1).

Solution: The equation of the required straight line is∣∣∣∣∣∣
1 x y
1 x0 y0

1 x1 y1

∣∣∣∣∣∣ = 0

(y0 − y1)x + (x1 − x0)y + (x0y1 − x1y0) = 0

�
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Example

Find the cubic polynomial that interpolates the data points
(−1, 4), (1, 2), (2, 1) and (3, 16).

Solution: The required equation is∣∣∣∣∣∣∣∣∣∣
1 x x2 x3 y
1 −1 1 −1 4
1 1 1 1 2
1 2 4 8 1
1 3 9 27 16

∣∣∣∣∣∣∣∣∣∣
= 0
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∣∣∣∣∣∣∣∣∣∣
1 x x2 x3 y
1 −1 1 −1 4
0 2 0 2 −2
0 3 3 9 −3
0 4 8 28 12

∣∣∣∣∣∣∣∣∣∣
= 0

...∣∣∣∣∣∣∣∣∣∣
1 x x2 x3 y
1 0 0 0 7
0 1 0 0 −3
0 0 1 0 −4
0 0 0 1 2

∣∣∣∣∣∣∣∣∣∣
= 0

−7 + 3x + 4x2 − 2x3 + y = 0

y = 7− 3x − 4x2 + 2x3
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Example

Find the equation of the circle determined by the points (−1, 5), (5,−3) and (6, 4).

Solution: The equation of the required circle is∣∣∣∣∣∣∣∣
x2 + y2 x y 1

(−1)2 + 52 −1 5 1
52 + (−3)2 5 −3 1

62 + 42 6 4 1

∣∣∣∣∣∣∣∣ = 0

∣∣∣∣∣∣∣∣
x2 + y2 x y 1

26 −1 5 1
34 5 −3 1
52 6 4 1

∣∣∣∣∣∣∣∣ = 0

...∣∣∣∣∣∣∣∣
x2 + y2 x y 1

20 0 0 1
4 1 0 0
2 0 1 0

∣∣∣∣∣∣∣∣ = 0

x2 + y2 − 4x − 2y − 20 = 0
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