THE CHINESE UNIVERSITY OF HONG KONG
 Department of Mathematics
 MMAT5520
 Differential Equations \& Linear Algebra
 Suggested Solution for Assignment 5
 Prepared by CHEUNG Siu Wun

Exercise 6.2 Question 1(a)

Find the general solutions to the following systems of differential equations.

$$
\left\{\begin{array}{l}
x_{1}^{\prime}=x_{1}+2 x_{2} \\
x_{2}^{\prime}=2 x_{1}+x_{2}
\end{array}\right.
$$

Soution: Define the matrix A by

$$
\mathbf{A}=\left(\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right)
$$

Then the systems of differential equations can be rewritten as $\mathbf{x}^{\prime}=\mathbf{A x}$. Solving the characteristic equation

$$
\begin{aligned}
\left|\begin{array}{cc}
\lambda-1 & -2 \\
-2 & \lambda-1
\end{array}\right| & =0, \\
\lambda^{2}-2 \lambda-3 & =0, \\
\lambda & =-1,3 .
\end{aligned}
$$

We find that the eigenvalues of the coefficient matrix are $\lambda_{1}=-1$ and $\lambda_{2}=3$ and the associated eigenvectors are

$$
\xi^{(1)}=\binom{1}{-1}, \quad \xi^{(2)}=\binom{1}{1}
$$

respectively. Therefore the general solution is

$$
\binom{x_{1}}{x_{2}}=c_{1} e^{-t}\binom{1}{-1}+c_{2} e^{3 t}\binom{1}{1} .
$$

Exercise 6.2 Question 1(c)

Find the general solutions to the following systems of differential equations.

$$
\left\{\begin{array}{l}
x_{1}^{\prime}=x_{1}-5 x_{2} \\
x_{2}^{\prime}=x_{1}-x_{2}
\end{array}\right.
$$

Soution: Define the matrix A by

$$
\mathbf{A}=\left(\begin{array}{ll}
1 & -5 \\
1 & -1
\end{array}\right)
$$

Then the systems of differential equations can be rewritten as $\mathbf{x}^{\prime}=\mathbf{A x}$. Solving the characteristic equation

$$
\begin{aligned}
\left|\begin{array}{cc}
\lambda-1 & 5 \\
-1 & \lambda+1
\end{array}\right| & =0 \\
\lambda^{2}+4 & =0, \\
\lambda & = \pm 2 i .
\end{aligned}
$$

We find that the eigenvalues of the coefficient matrix are $\lambda_{1}=2 i$ and $\lambda_{2}=-2 i$ and the associated eigenvectors are

$$
\begin{aligned}
& \xi^{(1)}=\binom{1+2 i}{1}=\binom{1}{1}+\binom{2}{0} i \\
& \xi^{(2)}=\binom{1-2 i}{1}=\binom{1}{1}-\binom{2}{0} i
\end{aligned}
$$

respectively. Therefore

$$
\begin{aligned}
& x^{(1)}=\binom{1}{1} \cos 2 t-\binom{2}{0} \sin 2 t=\binom{\cos 2 t-2 \sin 2 t}{\cos 2 t} \\
& x^{(2)}=\binom{2}{0} \cos 2 t+\binom{1}{1} \sin 2 t=\binom{2 \cos 2 t+\sin 2 t}{\sin 2 t}
\end{aligned}
$$

are two linearly independent solutions and the general solution is

$$
\begin{aligned}
\binom{x_{1}}{x_{2}} & =c_{1}\binom{\cos 2 t-2 \sin 2 t}{\cos 2 t}+c_{2}\binom{2 \cos 2 t+\sin 2 t}{\sin 2 t} \\
& =\binom{\left(c_{1}+2 c_{2}\right) \cos 2 t+\left(c_{2}-2 c_{1}\right) \sin 2 t}{c_{1} \cos 2 t+c_{2} \sin 2 t}
\end{aligned}
$$

Exercise 6.2 Question 1(f)

Find the general solutions to the following systems of differential equations.

$$
\left\{\begin{array}{l}
x_{1}^{\prime}=4 x_{1}+x_{2}+x_{3} \\
x_{2}^{\prime}=x_{1}+4 x_{2}+x_{3} \\
x_{3}^{\prime}=x_{1}+x_{2}+4 x_{3}
\end{array}\right.
$$

Soution: Define the matrix \mathbf{A} by

$$
\mathbf{A}=\left(\begin{array}{lll}
4 & 1 & 1 \\
1 & 4 & 1 \\
1 & 1 & 4
\end{array}\right)
$$

Then the systems of differential equations can be rewritten as $\mathbf{x}^{\prime}=\mathbf{A x}$. Solving the characteristic equation

$$
\begin{aligned}
\left|\begin{array}{ccc}
\lambda-4 & -1 & -1 \\
-1 & \lambda-4 & -1 \\
-1 & -1 & \lambda-4
\end{array}\right| & =0 \\
(\lambda-3)^{2}(\lambda-6) & =0 \\
\lambda & =3,3,6
\end{aligned}
$$

For the repeated root $\lambda_{1}=\lambda_{2}=3$, there are two linearly independent eigenvectors

$$
\xi^{(1)}=\left(\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right), \quad \xi^{(2)}=\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right)
$$

For $\lambda_{3}=6$, the associated eigenvector is

$$
\xi^{(3)}=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)
$$

Therefore the general solution is

$$
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=c_{1} e^{3 t}\left(\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right)+c_{2} e^{3 t}\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right)+c_{3} e^{6 t}\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)
$$

Exercise 6.2 Question 2

Solve the following initial value problem.

$$
\left\{\begin{array}{l}
x_{1}^{\prime}=9 x_{1}+5 x_{2} \\
x_{2}^{\prime}=-6 x_{1}-2 x_{2} \\
x_{1}(0)=1, x_{2}(0)=2
\end{array}\right.
$$

Soution: Define the matrix A by

$$
\mathbf{A}=\left(\begin{array}{cc}
9 & 5 \\
-6 & -2
\end{array}\right)
$$

Then the systems of differential equations can be rewritten as $\mathbf{x}^{\prime}=\mathbf{A x}$. Solving the characteristic equation

$$
\begin{aligned}
\left|\begin{array}{cc}
\lambda-9 & -5 \\
6 & \lambda+2
\end{array}\right| & =0 \\
\lambda^{2}-7 \lambda+12 & =0 \\
\lambda & =3,4 .
\end{aligned}
$$

We find that the eigenvalues of the coefficient matrix are $\lambda_{1}=3$ and $\lambda_{2}=4$ and the associated eigenvectors are

$$
\xi^{(1)}=\binom{5}{-6}, \quad \xi^{(2)}=\binom{1}{-1}
$$

respectively. Therefore the general solution is

$$
\binom{x_{1}}{x_{2}}=c_{1} e^{3 t}\binom{5}{-6}+c_{2} e^{4 t}\binom{1}{-1}
$$

Since $x_{1}(0)=1, x_{2}(0)=0$, we have $c_{1}=-1, c_{2}=6$. So

$$
\binom{x_{1}}{x_{2}}=\binom{6 e^{4 t}-5 e^{3 t}}{-6 e^{4 t}+6 e^{3 t}}
$$

Exercise 6.2 Question 3(b)

Solve $\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}$ for the given matrix \mathbf{A}.

$$
\mathbf{A}=\left(\begin{array}{ll}
1 & -1 \\
5 & -1
\end{array}\right)
$$

Soution: Solving the characteristic equation

$$
\begin{aligned}
\left|\begin{array}{cc}
\lambda-1 & 1 \\
-5 & \lambda+1
\end{array}\right| & =0 \\
\lambda^{2}+4 & =0, \\
\lambda & = \pm 2 i .
\end{aligned}
$$

We find that the eigenvalues of the coefficient matrix are $\lambda_{1}=2 i$ and $\lambda_{2}=-2 i$ and the associated eigenvectors are

$$
\begin{aligned}
& \xi^{(1)}=\binom{1}{1-2 i}=\binom{1}{1}+\binom{0}{-2} i \\
& \xi^{(2)}=\binom{1}{1+2 i}=\binom{1}{1}-\binom{0}{-2} i
\end{aligned}
$$

respectively. Therefore

$$
\begin{aligned}
& x^{(1)}=\binom{1}{1} \cos 2 t-\binom{0}{-2} \sin 2 t=\binom{\cos 2 t}{\cos 2 t+2 \sin 2 t} \\
& x^{(2)}=\binom{0}{-2} \cos 2 t+\binom{1}{1} \sin 2 t=\binom{\sin 2 t}{-2 \cos 2 t+\sin 2 t}
\end{aligned}
$$

are two linearly independent solutions and the general solution is

$$
\mathbf{x}=c_{1}\binom{\cos 2 t}{\cos 2 t+2 \sin 2 t}+c_{2}\binom{\sin 2 t}{-2 \cos 2 t+\sin 2 t} .
$$

Exercise 6.2 Question 3(d)

Solve $\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}$ for the given matrix \mathbf{A}.

$$
\mathbf{A}=\left(\begin{array}{ccc}
4 & -1 & -1 \\
1 & 2 & -1 \\
1 & -1 & 2
\end{array}\right)
$$

Soution: Solving the characteristic equation

$$
\begin{aligned}
\left|\begin{array}{ccc}
\lambda-4 & 1 & 1 \\
-1 & \lambda-2 & 1 \\
-1 & 1 & \lambda-2
\end{array}\right| & =0 \\
(\lambda-2)(\lambda-3)^{2} & =0 \\
\lambda & =2,3,3
\end{aligned}
$$

For $\lambda_{1}=2$, the associated eigenvector is

$$
\xi^{(1)}=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)
$$

For the repeated root $\lambda_{2}=\lambda_{3}=3$, there are two linearly independent eigenvectors

$$
\xi^{(2)}=\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right), \quad \xi^{(3)}=\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)
$$

Therefore the general solution is

$$
\mathbf{x}=c_{1} e^{2 t}\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)+c_{2} e^{3 t}\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)+c_{3} e^{3 t}\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)
$$

Exercise 6.3 Question 1(a)

Find the general solution to the system $\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}$ for the given matrix \mathbf{A}.

$$
\mathbf{A}=\left(\begin{array}{cc}
1 & 2 \\
-2 & -3
\end{array}\right)
$$

Soution: Solving the characteristic equation, we have

$$
\begin{aligned}
\left|\begin{array}{cc}
\lambda-1 & -2 \\
2 & \lambda+3
\end{array}\right| & =0 \\
(\lambda+1)^{2} & =0 \\
\lambda & =-1,-1
\end{aligned}
$$

$\lambda=-1$ is a double root and the eigenspace associated with $\lambda=-1$ is of dimension 1 and is spanned by $\binom{1}{-1}$. Thus

$$
x^{(1)}=e^{-t}\binom{1}{-1}
$$

is a solution. Next, we will find a generalized eigenvector of rank 2. Take $\eta=\binom{1}{0}$, then

$$
\eta_{1}=(\mathbf{A}+\mathbf{I}) \eta=\binom{2}{-2} \neq \mathbf{0}
$$

$$
\eta_{2}=(\mathbf{A}+\mathbf{I})^{2} \eta=\mathbf{0}
$$

Thus, η is a generalized eigenvector of rank 2. Hence

$$
x^{(2)}=e^{-t}\left(\eta+t \eta_{1}\right)=e^{-t}\binom{1+2 t}{-2 t}
$$

is another solution to the system. Therefore the general solution is

$$
\mathbf{x}=c_{1} e^{-t}\binom{1}{-1}+c_{2} e^{-t}\binom{1+2 t}{-2 t}
$$

Exercise 6.3 Question 1(c)

Find the general solution to the system $\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}$ for the given matrix \mathbf{A}.

$$
\mathbf{A}=\left(\begin{array}{cc}
3 & -1 \\
1 & 1
\end{array}\right)
$$

Soution: Solving the characteristic equation, we have

$$
\begin{aligned}
\left|\begin{array}{cc}
\lambda-3 & 1 \\
-1 & \lambda-1
\end{array}\right| & =0 \\
(\lambda-2)^{2} & =0 \\
\lambda & =2,2
\end{aligned}
$$

$\lambda=2$ is a double root and the eigenspace associated with $\lambda=2$ is of dimension 1 and is spanned by $\binom{1}{1}$. Thus

$$
x^{(1)}=e^{2 t}\binom{1}{1}
$$

is a solution. Next, we will find a generalized eigenvector of rank 2. Take $\eta=\binom{1}{0}$, then

$$
\begin{gathered}
\eta_{1}=(\mathbf{A}-2 \mathbf{I}) \eta=\binom{1}{1} \neq \mathbf{0} \\
\eta_{2}=(\mathbf{A}-2 \mathbf{I})^{2} \eta=\mathbf{0}
\end{gathered}
$$

Thus, η is a generalized eigenvector of rank 2. Hence

$$
x^{(2)}=e^{2 t}\left(\eta+t \eta_{1}\right)=e^{2 t}\binom{1+t}{t}
$$

is another solution to the system. Therefore the general solution is

$$
\mathbf{x}=c_{1} e^{2 t}\binom{1}{1}+c_{2} e^{2 t}\binom{1+t}{t}
$$

Exercise 6.3 Question 1(d)

Find the general solution to the system $\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}$ for the given matrix \mathbf{A}.

$$
\mathbf{A}=\left(\begin{array}{ccc}
-3 & 0 & -4 \\
-1 & -1 & -1 \\
1 & 0 & 1
\end{array}\right)
$$

Soution: Solving the characteristic equation, we have

$$
\begin{aligned}
\left|\begin{array}{ccc}
\lambda+3 & 0 & 4 \\
1 & \lambda+1 & 1 \\
-1 & 0 & \lambda-1
\end{array}\right| & =0 \\
&
\end{aligned}
$$

Thus \mathbf{A} has an eigenvalue $\lambda=-1$ of multiplicity 3 . we find that the associated eigenspace is of dimension 1 and is spanned by $\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$. We need to find a generalized eigenvector of rank 3 . Let $\eta=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$, then

$$
\begin{gathered}
\eta_{1}=(\mathbf{A}+\mathbf{I}) \eta=\left(\begin{array}{c}
-2 \\
-1 \\
1
\end{array}\right) \neq \mathbf{0}, \\
\eta_{2}=(\mathbf{A}+\mathbf{I})^{2} \eta=\left(\begin{array}{c}
0 \\
1 \\
0
\end{array}\right) \neq \mathbf{0}, \\
\eta_{3}=(\mathbf{A}+\mathbf{I})^{3} \eta=\mathbf{0} .
\end{gathered}
$$

Therefore, η is a generalized eigenvector of rank 3. Hence

$$
\begin{gathered}
x^{(1)}=e^{-t} \eta_{2}=e^{-t}\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) \\
x^{(2)}=e^{-t}\left(\eta_{1}+t \eta_{2}\right)=e^{-t}\left(\begin{array}{c}
-2 \\
-1+t \\
1
\end{array}\right) \\
x^{(3)}=e^{-t}\left(\eta+t \eta_{1}+\frac{t^{2}}{2} \eta_{2}\right)=e^{-t}\left(\begin{array}{c}
1-2 t \\
-t+\frac{t^{2}}{2} \\
t
\end{array}\right)
\end{gathered}
$$

form a fundamental set of solutions to the system.
Therefore the general solution is

$$
\mathbf{x}=e^{-t}\left(c_{1}\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)+c_{2}\left(\begin{array}{c}
-2 \\
-1+t \\
1
\end{array}\right)+c_{3}\left(\begin{array}{c}
1-2 t \\
-t+\frac{t^{2}}{2} \\
t
\end{array}\right)\right)
$$

Exercise 6.3 Question 1(f)

Find the general solution to the system $\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}$ for the given matrix \mathbf{A}.

$$
\mathbf{A}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
-2 & -2 & -3 \\
2 & 3 & 4
\end{array}\right)
$$

Soution: Solving the characteristic equation, we have

$$
\begin{aligned}
\left|\begin{array}{ccc}
\lambda-1 & 0 & 0 \\
2 & \lambda+2 & 3 \\
-2 & -3 & \lambda-4
\end{array}\right| & =0 \\
& \\
(\lambda-1)^{3} & =0 \\
\lambda & =1,1,1
\end{aligned}
$$

Thus A has an eigenvalue $\lambda=1$ of multiplicity 3 . we find that the associated eigenspace is of dimension 2 and is spanned by $\left(\begin{array}{c}3 \\ -2 \\ 0\end{array}\right)$ and $\left(\begin{array}{c}3 \\ 0 \\ -2\end{array}\right)$. Thus

$$
x^{(1)}=e^{t}\left(\begin{array}{c}
3 \\
-2 \\
0
\end{array}\right), \quad x^{(2)}=e^{t}\left(\begin{array}{c}
3 \\
0 \\
-2
\end{array}\right)
$$

are two independent solutions. Next, We need to find a generalized eigenvector of rank 2 .
Let $\eta=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$, then

$$
\begin{gathered}
\eta_{1}=(\mathbf{A}-\mathbf{I}) \eta=\left(\begin{array}{c}
0 \\
-2 \\
2
\end{array}\right) \neq \mathbf{0}, \\
\eta_{2}=(\mathbf{A}-\mathbf{I})^{2} \eta=\mathbf{0} .
\end{gathered}
$$

Therefore, η is a generalized eigenvector of rank 2. Hence

$$
x^{(3)}=e^{t}\left(\eta+t \eta_{1}\right)=e^{t}\left(\begin{array}{c}
1 \\
-2 t \\
2 t
\end{array}\right)
$$

is another solution to the system.
Therefore the general solution is

$$
\mathbf{x}=c_{1} e^{t}\left(\begin{array}{c}
3 \\
-2 \\
0
\end{array}\right)+c_{2} e^{t}\left(\begin{array}{c}
3 \\
0 \\
-2
\end{array}\right)+c_{3} e^{t}\left(\begin{array}{c}
1 \\
-2 t \\
2 t
\end{array}\right)
$$

Exercise 6.4 Question 1(b)

Find $\exp (\mathbf{A} t)$ where \mathbf{A} is the following matrix.

$$
\left(\begin{array}{ll}
5 & -4 \\
2 & -1
\end{array}\right)
$$

Soution: Solving the characteristic equation, we have

$$
\begin{aligned}
\left|\begin{array}{cc}
\lambda-5 & 4 \\
-2 & \lambda+1
\end{array}\right| & =0, \\
\lambda^{2}-4 \lambda+3 & =0, \\
\lambda & =1,3 .
\end{aligned}
$$

For $\lambda_{1}=1$, the associated eigenvector is $\xi^{(1)}=\binom{1}{1}$.
For $\lambda_{2}=3$, the associated eigenvector is $\xi^{(2)}=\binom{2}{1}$.
Let $\mathbf{P}=\left(\begin{array}{ll}1 & 2 \\ 1 & 1\end{array}\right)$, then we have $\mathbf{D}=\mathbf{P}^{-1} \mathbf{A} \mathbf{P}=\left(\begin{array}{ll}1 & 0 \\ 0 & 3\end{array}\right)$, and hence

$$
\begin{aligned}
\exp (\mathbf{A} t)=\mathbf{P} \exp (\mathbf{D} t) \mathbf{P}^{-1} & =\left(\begin{array}{cc}
1 & 2 \\
1 & 1
\end{array}\right)\left(\begin{array}{cc}
e^{t} & 0 \\
0 & e^{3 t}
\end{array}\right)\left(\begin{array}{ll}
1 & 2 \\
1 & 1
\end{array}\right)^{-1} \\
& =-\left(\begin{array}{cc}
e^{t} & 2 e^{3 t} \\
e^{t} & e^{3 t}
\end{array}\right)\left(\begin{array}{cc}
1 & -2 \\
-1 & 1
\end{array}\right) \\
& =\left(\begin{array}{cc}
2 e^{3 t}-e^{t} & 2 e^{t}-2 e^{3 t} \\
e^{3 t}-e^{t} & 2 e^{t}-e^{3 t}
\end{array}\right)
\end{aligned}
$$

Exercise 6.4 Question 1(d)

Find $\exp (\mathbf{A} t)$ where \mathbf{A} is the following matrix.

$$
\left(\begin{array}{cc}
0 & 2 \\
-2 & 0
\end{array}\right)
$$

Soution: Solving the characteristic equation, we have

$$
\begin{aligned}
\left|\begin{array}{cc}
\lambda & -2 \\
2 & \lambda
\end{array}\right| & =0, \\
\lambda^{2}+4 & =0, \\
\lambda & = \pm 2 i .
\end{aligned}
$$

For $\lambda_{1}=2 i$, the associated eigenvector is $\xi^{(1)}=\binom{1}{i}$.
For $\lambda_{2}=-2 i$, the associated eigenvector is $\xi^{(2)}=\binom{i}{1}$.

Let $\mathbf{P}=\left(\begin{array}{cc}1 & i \\ i & 1\end{array}\right)$, then we have $\mathbf{D}=\mathbf{P}^{-1} \mathbf{A P}=\left(\begin{array}{cc}2 i & 0 \\ 0 & -2 i\end{array}\right)$, and hence

$$
\begin{aligned}
\exp (\mathbf{A} t)=\mathbf{P} \exp (\mathbf{D} t) \mathbf{P}^{-1} & =\left(\begin{array}{cc}
1 & i \\
i & 1
\end{array}\right)\left(\begin{array}{cc}
e^{2 t i} & 0 \\
0 & e^{-2 t i}
\end{array}\right)\left(\begin{array}{cc}
1 & i \\
i & 1
\end{array}\right)^{-1} \\
& =\frac{1}{2}\left(\begin{array}{cc}
e^{2 t i} & i e^{-2 t i} \\
i e^{2 t i} & e^{-2 t i}
\end{array}\right)\left(\begin{array}{cc}
1 & -i \\
-i & 1
\end{array}\right) \\
& =\frac{1}{2}\left(\begin{array}{cc}
e^{2 t i}+e^{-2 t i} & -i e^{2 t i}+i e^{-2 t i} \\
i e^{2 t i}-i e^{-2 t i} & e^{2 t i}+e^{-2 t i}
\end{array}\right) \\
& =\left(\begin{array}{cc}
\cos 2 t & \sin 2 t \\
-\sin 2 t & \cos 2 t
\end{array}\right)
\end{aligned}
$$

Exercise 6.4 Question 1(e)

Find $\exp (\mathbf{A} t)$ where \mathbf{A} is the following matrix.

$$
\left(\begin{array}{ll}
0 & 3 \\
0 & 0
\end{array}\right)
$$

Soution: Solving the characteristic equation, we have

$$
\begin{aligned}
\left|\begin{array}{cc}
\lambda & -3 \\
0 & \lambda
\end{array}\right| & =0 \\
\lambda^{2} & =0 \\
\lambda & =0,0
\end{aligned}
$$

We see that \mathbf{A} has only one eigenvalue $\lambda=0$, but the associated eigenspace is of dimension 1 , which is spanned by $\xi=\binom{1}{0}$. Thus \mathbf{A} is not diagonalizable. So we need to find a generalized eigenvector of rank 2 . Now we take $\eta=\binom{0}{1}$, and let

$$
\begin{gathered}
\eta_{1}=\mathbf{A} \eta=\binom{3}{0} \\
\eta_{2}=\mathbf{A}^{2} \eta=\mathbf{0}
\end{gathered}
$$

We see that η is a generalized eigenvector of rank 2, we may let

$$
\mathbf{Q}=\left[\begin{array}{ll}
\eta_{1} & \eta
\end{array}\right]=\left(\begin{array}{ll}
3 & 0 \\
0 & 1
\end{array}\right)
$$

then

$$
\mathbf{J}=\mathbf{Q}^{-1} \mathbf{A} \mathbf{Q}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)
$$

and hence

$$
\begin{aligned}
\exp (\mathbf{A} t) & =\mathbf{Q} \exp (\mathbf{J} t) \mathbf{Q}^{-1} \\
& =\left(\begin{array}{ll}
3 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & t \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
3 & 0 \\
0 & 1
\end{array}\right)^{-1} \\
& =\frac{1}{3}\left(\begin{array}{ll}
3 & 3 t \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & 3
\end{array}\right) \\
& =\left(\begin{array}{cc}
1 & 3 t \\
0 & 1
\end{array}\right)
\end{aligned}
$$

Exercise 6.4 Question 1(f)

Find $\exp (\mathbf{A} t)$ where \mathbf{A} is the following matrix.

$$
\left(\begin{array}{ccc}
1 & 1 & 1 \\
2 & 1 & -1 \\
-8 & -5 & -3
\end{array}\right)
$$

Soution: Solving the characteristic equation, we have

$$
\begin{aligned}
\left|\begin{array}{ccc}
\lambda-1 & -1 & -1 \\
-2 & \lambda-1 & 1 \\
8 & 5 & \lambda+3
\end{array}\right| & =0 \\
\lambda^{3}+\lambda^{2}-4 \lambda-4 & =0 \\
\lambda & =-2,-1,2 .
\end{aligned}
$$

For $\lambda_{1}=-2$, the associated eigenvector is $\xi^{(1)}=\left(\begin{array}{c}-4 \\ 5 \\ 7\end{array}\right)$.
For $\lambda_{2}=-1$, the associated eigenvector is $\xi^{(2)}=\left(\begin{array}{c}-3 \\ 4 \\ 2\end{array}\right)$.
For $\lambda_{3}=2$, the associated eigenvector is $\xi^{(3)}=\left(\begin{array}{c}0 \\ -1 \\ 1\end{array}\right)$.
Let $\mathbf{P}=\left(\begin{array}{ccc}-4 & -3 & 0 \\ 5 & 4 & -1 \\ 7 & 2 & 1\end{array}\right)$, then we have $\mathbf{D}=\mathbf{P}^{-1} \mathbf{A} \mathbf{P}=\left(\begin{array}{ccc}-2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 2\end{array}\right)$, and hence

$$
\exp (\mathbf{A} t)=\mathbf{P} \exp (\mathbf{D} t) \mathbf{P}^{-1}
$$

$$
\begin{aligned}
& =\left(\begin{array}{ccc}
-4 & -3 & 0 \\
5 & 4 & -1 \\
7 & 2 & 1
\end{array}\right)\left(\begin{array}{ccc}
e^{-2 t} & 0 & 0 \\
0 & e^{-t} & 0 \\
0 & 0 & e^{2 t}
\end{array}\right)\left(\begin{array}{ccc}
-4 & -3 & 0 \\
5 & 4 & -1 \\
7 & 2 & 1
\end{array}\right)^{-1} \\
& =\left(\begin{array}{ccc}
-4 e^{-2 t} & -3 e^{-t} & 0 \\
5 e^{-2 t} & 4 e^{-t} & -e^{2 t} \\
7 e^{-2 t} & 2 e^{-t} & e^{2 t}
\end{array}\right) \cdot \frac{1}{12}\left(\begin{array}{ccc}
6 & 3 & 3 \\
-12 & -4 & -4 \\
-18 & -13 & -1
\end{array}\right) \\
& =\frac{1}{12}\left(\begin{array}{ccc}
-24 e^{-2 t}+36 e^{-t} & -12 e^{-2 t}+12 e^{-t} & -12 e^{-2 t}+12 e^{-t} \\
30 e^{-2 t}-48 e^{-t}+18 e^{2 t} & 15 e^{-2 t}-16 e^{-t}+13 e^{2 t} & 15 e^{-2 t}-16 e^{-t}+e^{2 t} \\
42 e^{-2 t}-24 e^{-t}-18 e^{2 t} & 21 e^{-2 t}-8 e^{-t}-13 e^{2 t} & 21 e^{-2 t}-8 e^{-t}-e^{2 t}
\end{array}\right)
\end{aligned}
$$

Exercise 6.4 Question 1 (g)

Find $\exp (\mathbf{A} t)$ where \mathbf{A} is the following matrix.

$$
\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

Soution: $\quad \exp (\mathbf{A} t)=\left(\begin{array}{ccc}1 & t & \frac{t^{2}}{2} \\ 0 & 1 & t \\ 0 & 0 & 1\end{array}\right)$.

Exercise 6.4 Question 2(a)

Solve the system $\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}$ with initial condition $\mathbf{x}(0)=\mathbf{x}_{0}$ for given \mathbf{A} and \mathbf{x}_{0}.

$$
\mathbf{A}=\left(\begin{array}{cc}
2 & 5 \\
-1 & -4
\end{array}\right) ; \quad \mathbf{x}_{0}=\binom{1}{-5}
$$

Soution: Solving the characteristic equation, we have

$$
\begin{aligned}
\left|\begin{array}{cc}
\lambda-2 & -5 \\
1 & \lambda+4
\end{array}\right| & =0 \\
\lambda^{2}+2 \lambda-3 & =0 \\
\lambda & =-3,1 .
\end{aligned}
$$

For $\lambda_{1}=-3$, the associated eigenvector is $\xi^{(1)}=\binom{-1}{1}$.
For $\lambda_{2}=1$, the associated eigenvector is $\xi^{(2)}=\binom{-5}{1}$.
Let $\mathbf{P}=\left(\begin{array}{cc}-1 & -5 \\ 1 & 1\end{array}\right)$, then we have $\mathbf{D}=\mathbf{P}^{-1} \mathbf{A P}=\left(\begin{array}{cc}-3 & 0 \\ 0 & 1\end{array}\right)$, and hence

$$
\begin{aligned}
\exp (\mathbf{A} t) & =\mathbf{P} \exp (\mathbf{D} t) \mathbf{P}^{-1} \\
& =\left(\begin{array}{cc}
-1 & -5 \\
1 & 1
\end{array}\right)\left(\begin{array}{cc}
e^{-3 t} & 0 \\
0 & e^{t}
\end{array}\right)\left(\begin{array}{cc}
-1 & -5 \\
1 & 1
\end{array}\right)^{-1} \\
& =\left(\begin{array}{cc}
-e^{-3 t} & -5 e^{t} \\
e^{-3 t} & e^{t}
\end{array}\right) \cdot \frac{1}{4}\left(\begin{array}{cc}
1 & 5 \\
-1 & -1
\end{array}\right) \\
& =\frac{1}{4}\left(\begin{array}{cc}
-e^{-3 t}+5 e^{t} & -5 e^{-3 t}+5 e^{t} \\
e^{-3 t}-e^{t} & 5 e^{-3 t}-e^{t}
\end{array}\right)
\end{aligned}
$$

Therefore the solution to the initial problem is

$$
\begin{aligned}
\mathbf{x} & =\exp (\mathbf{A} t) \mathbf{x}_{0} \\
& =\frac{1}{4}\left(\begin{array}{cc}
-e^{-3 t}+5 e^{t} & -5 e^{-3 t}+5 e^{t} \\
e^{-3 t}-e^{t} & 5 e^{-3 t}-e^{t}
\end{array}\right)\binom{1}{-5} \\
& =\binom{6 e^{-3 t}-5 e^{t}}{-6 e^{-3 t}+e^{t}}
\end{aligned}
$$

Exercise 6.4 Question 2(c)

Solve the system $\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}$ with initial condition $\mathbf{x}(0)=\mathbf{x}_{0}$ for given \mathbf{A} and \mathbf{x}_{0}.

$$
\mathbf{A}=\left(\begin{array}{ccc}
-1 & -2 & -2 \\
1 & 2 & 1 \\
-1 & -1 & 0
\end{array}\right) ; \quad \mathbf{x}_{0}=\left(\begin{array}{c}
3 \\
0 \\
-1
\end{array}\right)
$$

Soution: Solving the characteristic equation, we have

$$
\begin{aligned}
\left|\begin{array}{ccc}
\lambda+1 & 2 & 2 \\
-1 & \lambda-2 & -1 \\
1 & 1 & \lambda
\end{array}\right| & =0 \\
(\lambda-1)^{2}(\lambda+1) & =0 \\
\lambda & =1,1,-1
\end{aligned}
$$

For $\lambda_{1}=\lambda_{2}=1$, the associated eigenvector is $\xi^{(1)}=\left(\begin{array}{c}1 \\ 0 \\ -1\end{array}\right)$ and $\xi^{(2)}=\left(\begin{array}{c}1 \\ -1 \\ 0\end{array}\right)$.
For $\lambda_{3}=-1$, the associated eigenvector is $\xi^{(2)}=\left(\begin{array}{c}2 \\ -1 \\ 1\end{array}\right)$.
Let $\mathbf{P}=\left(\begin{array}{ccc}2 & 1 & 1 \\ -1 & 0 & -1 \\ 1 & -1 & 0\end{array}\right)$, then we have $\mathbf{D}=\mathbf{P}^{-1} \mathbf{A P}=\left(\begin{array}{ccc}-1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$, and hence

$$
\begin{aligned}
\exp (\mathbf{A} t) & =\mathbf{P} \exp (\mathbf{D} t) \mathbf{P}^{-1} \\
& =\left(\begin{array}{ccc}
2 & 1 & 1 \\
-1 & 0 & -1 \\
1 & -1 & 0
\end{array}\right)\left(\begin{array}{ccc}
e^{-t} & 0 & 0 \\
0 & e^{t} & 0 \\
0 & 0 & e^{t}
\end{array}\right)\left(\begin{array}{ccc}
2 & 1 & 1 \\
-1 & 0 & -1 \\
1 & -1 & 0
\end{array}\right){ }^{-1} \\
& =-\frac{1}{2}\left(\begin{array}{ccc}
2 e^{-t} & e^{t} & e^{t} \\
-e^{-t} & 0 & -e^{t} \\
e^{-t} & e^{-t} & 0
\end{array}\right)\left(\begin{array}{ccc}
-1 & -1 & -1 \\
-1 & -1 & 1 \\
1 & 3 & 1
\end{array}\right) \\
& =-\frac{1}{2}\left(\begin{array}{ccc}
-2 e^{-t} & -2 e^{-t}+2 e^{t} & -2 e^{-t}+2 e^{t} \\
e^{-t}-e^{t} & e^{-t}-3 e^{t} & e^{-t}-e^{t} \\
-e^{-t}+e^{t} & -e^{-t}+e^{t} & -e^{-t}-e^{t}
\end{array}\right)
\end{aligned}
$$

Therefore the solution to the initial problem is

$$
\begin{aligned}
\mathbf{x} & =\exp (\mathbf{A} t) \mathbf{x}_{0} \\
& =-\frac{1}{2}\left(\begin{array}{ccc}
-2 e^{-t} & -2 e^{-t}+2 e^{t} & -2 e^{-t}+2 e^{t} \\
e^{-t}-e^{t} & e^{-t}-3 e^{t} & e^{-t}-e^{t} \\
-e^{-t}+e^{t} & -e^{-t}+e^{t} & -e^{-t}-e^{t}
\end{array}\right)\left(\begin{array}{c}
3 \\
0 \\
-1
\end{array}\right) \\
& =\left(\begin{array}{c}
e^{t}+2 e^{-t} \\
e^{t}-e^{-t} \\
-2 e^{t}+e^{-t}
\end{array}\right)
\end{aligned}
$$

Exercise 6.5 Question 1(a)

For the given matrix \mathbf{A}, find the Jordan normal form of \mathbf{A} and the matrix exponential $\exp (\mathbf{A} t)$.

$$
\left(\begin{array}{cc}
4 & -1 \\
1 & 2
\end{array}\right)
$$

Soution: Solving the characteristic equation, we have

$$
\begin{aligned}
\left|\begin{array}{cc}
\lambda-4 & 1 \\
-1 & \lambda-2
\end{array}\right| & =0 \\
(\lambda-3)^{2} & =0 \\
\lambda & =3,3 .
\end{aligned}
$$

We see that \mathbf{A} has only one eigenvalue $\lambda=3$, but the associated eigenspace is of dimension 1 , which is spanned by $\xi=\binom{1}{1}$. Thus \mathbf{A} is not diagonalizable. So we need to find a generalized eigenvector of rank 2 . Now we take $\eta=\binom{1}{0}$, and let

$$
\begin{gathered}
\eta_{1}=(\mathbf{A}-3 \mathbf{I}) \eta=\binom{1}{1} \\
\eta_{2}=(\mathbf{A}-3 \mathbf{I})^{2} \eta=\mathbf{0}
\end{gathered}
$$

We see that η is a generalized eigenvector of rank 2 , we may let

$$
\mathbf{Q}=\left[\begin{array}{ll}
\eta_{1} & \eta
\end{array}\right]=\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)
$$

then

$$
\mathbf{J}=\mathbf{Q}^{-1} \mathbf{A} \mathbf{Q}=\left(\begin{array}{ll}
3 & 1 \\
0 & 3
\end{array}\right)
$$

and hence

$$
\begin{aligned}
\exp (\mathbf{A} t) & =\mathbf{Q} \exp (\mathbf{J} t) \mathbf{Q}^{-1} \\
& =\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right) \cdot e^{3 t}\left(\begin{array}{ll}
1 & t \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)^{-1} \\
& =e^{3 t}\left(\begin{array}{cc}
1+t & -t \\
t & 1-t
\end{array}\right)
\end{aligned}
$$

Exercise 6.5 Question 1(c)

For the given matrix \mathbf{A}, find the Jordan normal form of \mathbf{A} and the matrix exponential $\exp (\mathbf{A} t)$.

$$
\left(\begin{array}{ccc}
5 & -1 & 1 \\
1 & 3 & 0 \\
-3 & 2 & 1
\end{array}\right)
$$

Soution: Solving the characteristic equation, we have

$$
\begin{aligned}
\left|\begin{array}{ccc}
\lambda-5 & 1 & -1 \\
-1 & \lambda-3 & 0 \\
3 & -2 & \lambda-1
\end{array}\right| & =0 \\
(\lambda-3)^{3} & =0 \\
\lambda & =3,3,3
\end{aligned}
$$

We see that \mathbf{A} has only one eigenvalue $\lambda=3$, but the associated eigenspace is of dimension 1 , which is spanned by $\xi=\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right)$. Thus \mathbf{A} is not diagonalizable. So we need to find a generalized eigenvector of rank 3 . Now we take $\eta=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$, and let

$$
\begin{gathered}
\eta_{1}=(\mathbf{A}-3 \mathbf{I}) \eta=\left(\begin{array}{c}
2 \\
1 \\
-3
\end{array}\right) \\
\eta_{2}=(\mathbf{A}-3 \mathbf{I})^{2} \eta=\left(\begin{array}{l}
0 \\
2 \\
2
\end{array}\right) \\
\eta_{3}=(\mathbf{A}-3 \mathbf{I})^{3} \eta=\mathbf{0}
\end{gathered}
$$

We see that η is a generalized eigenvector of rank 3, we may let

$$
\mathbf{Q}=\left[\begin{array}{lll}
\eta_{2} & \eta_{1} & \eta
\end{array}\right]=\left(\begin{array}{ccc}
0 & 2 & 1 \\
2 & 1 & 0 \\
2 & -3 & 0
\end{array}\right)
$$

then

$$
\mathbf{J}=\mathbf{Q}^{-1} \mathbf{A} \mathbf{Q}=\left(\begin{array}{lll}
3 & 1 & 0 \\
0 & 3 & 1 \\
0 & 0 & 3
\end{array}\right)
$$

and hence

$$
\begin{aligned}
\exp (\mathbf{A} t) & =\mathbf{Q} \exp (\mathbf{J} t) \mathbf{Q}^{-1} \\
& =\left(\begin{array}{ccc}
0 & 2 & 1 \\
2 & 1 & 0 \\
2 & -3 & 0
\end{array}\right) \cdot e^{3 t}\left(\begin{array}{ccc}
1 & t & \frac{t^{2}}{2} \\
0 & 1 & t \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
0 & 2 & 1 \\
2 & 1 & 0 \\
2 & -3 & 0
\end{array}\right)^{-1} \\
& =e^{3 t}\left(\begin{array}{ccc}
1+2 t & -t & t \\
t+t^{2} & 1-\frac{t^{2}}{2} & \frac{t^{2}}{2} \\
-3 t+t^{2} & 2 t-\frac{t^{2}}{2} & 1-2 t+\frac{t^{2}}{2}
\end{array}\right)
\end{aligned}
$$

Exercise 6.5 Question 1(d)

For the given matrix \mathbf{A}, find the Jordan normal form of \mathbf{A} and the matrix exponential $\exp (\mathbf{A} t)$.

$$
\left(\begin{array}{ccc}
-2 & 9 & 0 \\
1 & 4 & 0 \\
1 & 3 & 1
\end{array}\right)
$$

Soution: Solving the characteristic equation, we have

$$
\begin{aligned}
\left|\begin{array}{ccc}
\lambda+2 & 9 & 0 \\
-1 & \lambda-4 & 0 \\
-1 & -3 & \lambda-1
\end{array}\right| & =0 \\
(\lambda-1)^{3} & =0 \\
\lambda & =1,1,1
\end{aligned}
$$

We see that \mathbf{A} has only one eigenvalue $\lambda=1$, but the associated eigenspace is of dimension 2, which is spanned by $\xi^{(1)}=\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$ and $\xi^{(2)}=\left(\begin{array}{c}-3 \\ 1 \\ 1\end{array}\right)$. Thus \mathbf{A} is not diagonalizable. So we need to find a generalized eigenvector of rank 2 . Now we take $\eta=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$, and let

$$
\begin{gathered}
\eta_{1}=(\mathbf{A}-\mathbf{I}) \eta=\left(\begin{array}{c}
-3 \\
1 \\
1
\end{array}\right) \\
\eta_{2}=(\mathbf{A}-\mathbf{I})^{2} \eta=\mathbf{0}
\end{gathered}
$$

We see that η is a generalized eigenvector of rank 3 , we may let

$$
\mathbf{Q}=\left[\begin{array}{lll}
\xi^{(1)} & \eta_{1} & \eta
\end{array}\right]=\left(\begin{array}{ccc}
0 & -3 & 1 \\
0 & 1 & 0 \\
1 & 1 & 0
\end{array}\right)
$$

then

$$
\mathbf{J}=\mathbf{Q}^{-1} \mathbf{A} \mathbf{Q}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right)
$$

and hence

$$
\begin{aligned}
\exp (\mathbf{A} t) & =\mathbf{Q} \exp (\mathbf{J} t) \mathbf{Q}^{-1} \\
& =\left(\begin{array}{ccc}
0 & -3 & 1 \\
0 & 1 & 0 \\
1 & 1 & 0
\end{array}\right) \cdot e^{t}\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & t \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
0 & -3 & 1 \\
0 & 1 & 0 \\
1 & 1 & 0
\end{array}\right)^{-1} \\
& =e^{t}\left(\begin{array}{ccc}
1-3 t & -9 t & 0 \\
t & 1+3 t & 0 \\
t & 3 t & 1
\end{array}\right)
\end{aligned}
$$

Exercise 6.5 Question 1(e)

For the given matrix \mathbf{A}, find the Jordan normal form of \mathbf{A} and the matrix exponential $\exp (\mathbf{A} t)$.

$$
\left(\begin{array}{ccc}
-1 & 1 & 1 \\
1 & 2 & 7 \\
-1 & -3 & -7
\end{array}\right)
$$

Soution: Solving the characteristic equation, we have

$$
\begin{aligned}
\left|\begin{array}{ccc}
\lambda+1 & -1 & -1 \\
-1 & \lambda-2 & -7 \\
1 & 3 & \lambda+7
\end{array}\right| & =0 \\
(\lambda+2)^{3} & =0 \\
\lambda & =-2,-2,-2
\end{aligned}
$$

We see that \mathbf{A} has only one eigenvalue $\lambda=-2$, but the associated eigenspace is of dimension 1 , which is spanned by $\xi=\left(\begin{array}{c}1 \\ -2 \\ 1\end{array}\right)$. Thus \mathbf{A} is not diagonalizable. So we need to find a generalized eigenvector of rank 3 . Now we take $\eta=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$, and let

$$
\begin{gathered}
\eta_{1}=(\mathbf{A}+2 \mathbf{I}) \eta=\left(\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right) \\
\eta_{2}=(\mathbf{A}+2 \mathbf{I})^{2} \eta=\left(\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right) \\
\eta_{3}=(\mathbf{A}-\mathbf{I})^{3} \eta=\mathbf{0}
\end{gathered}
$$

We see that η is a generalized eigenvector of rank 3, we may let

$$
\mathbf{Q}=\left[\begin{array}{lll}
\xi & \eta_{1} & \eta
\end{array}\right]=\left(\begin{array}{ccc}
1 & 1 & 1 \\
-2 & 1 & 0 \\
1 & -1 & 0
\end{array}\right)
$$

then

$$
\mathbf{J}=\mathbf{Q}^{-1} \mathbf{A} \mathbf{Q}=\left(\begin{array}{ccc}
-2 & 1 & 0 \\
0 & -2 & 1 \\
0 & 0 & -2
\end{array}\right)
$$

and hence

$$
\begin{aligned}
\exp (\mathbf{A} t) & =\mathbf{Q} \exp (\mathbf{J} t) \mathbf{Q}^{-1} \\
& =\left(\begin{array}{ccc}
1 & 1 & 1 \\
-2 & 1 & 0 \\
1 & -1 & 0
\end{array}\right) \cdot e^{-2 t}\left(\begin{array}{ccc}
1 & t & \frac{t^{2}}{2} \\
0 & 1 & t \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 1 & 1 \\
-2 & 1 & 0 \\
1 & -1 & 0
\end{array}\right)^{-1} \\
& =e^{-2 t}\left(\begin{array}{ccc}
1+t+\frac{t^{2}}{2} & t+t^{2} & t+\frac{3 t^{2}}{2} \\
t-t^{2} & 1+4 t-2 t^{2} & 7 t-3 t^{2} \\
-t+\frac{t^{2}}{2} & -3 t+t^{2} & 1-5 t+\frac{3 t^{2}}{2}
\end{array}\right) .
\end{aligned}
$$

Exercise 6.6 Question 1(a)

Find a fundamental matrix for the system $\mathbf{x}^{\prime}=\mathbf{A x}$ where \mathbf{A} is the following matrix.

$$
\left(\begin{array}{ll}
3 & -2 \\
2 & -2
\end{array}\right)
$$

Soution: Solving the characteristic equation, we have

$$
\begin{aligned}
\left|\begin{array}{cc}
\lambda-3 & 2 \\
-2 & \lambda+2
\end{array}\right| & =0, \\
\lambda^{2}-\lambda-2 & =0, \\
\lambda & =-1,2 .
\end{aligned}
$$

For $\lambda_{1}=-1$, the associated eigenvector is $\xi^{(1)}=\binom{1}{2}$.
For $\lambda_{2}=2$, the associated eigenvector is $\xi^{(2)}=\binom{2}{1}$.
Let $\mathbf{P}=\left(\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right)$, then we have $\mathbf{D}=\mathbf{P}^{-1} \mathbf{A P}=\left(\begin{array}{cc}-1 & 0 \\ 0 & 2\end{array}\right)$.
Therefore a fundamental matrix for the system is

$$
\begin{aligned}
\boldsymbol{\Psi}(t)=\mathbf{P} \exp (\mathbf{D} t) & =\left(\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right)\left(\begin{array}{cc}
e^{-t} & 0 \\
0 & e^{2 t}
\end{array}\right) \\
& =\left(\begin{array}{cc}
e^{-t} & 2 e^{2 t} \\
2 e^{-t} & e^{2 t}
\end{array}\right)
\end{aligned}
$$

Exercise 6.6 Question 1(c)

Find a fundamental matrix for the system $\mathbf{x}^{\prime}=\mathbf{A x}$ where \mathbf{A} is the following matrix.

$$
\left(\begin{array}{ll}
2 & -5 \\
1 & -2
\end{array}\right)
$$

Soution: Solving the characteristic equation, we have

$$
\begin{aligned}
\left|\begin{array}{cc}
\lambda-2 & 5 \\
-1 & \lambda+2
\end{array}\right| & =0, \\
\lambda^{2}+1 & =0, \\
\lambda & = \pm i .
\end{aligned}
$$

For $\lambda_{1}=i$, the associated eigenvector is $\xi^{(1)}=\binom{i+2}{1}$.
For $\lambda_{2}=-i$, the associated eigenvector is $\xi^{(2)}=\binom{2-i}{1}$.
Let $\mathbf{P}=\left(\begin{array}{cc}i+2 & 2-i \\ 1 & 1\end{array}\right)$, then we have $\mathbf{D}=\mathbf{P}^{-1} \mathbf{A P}=\left(\begin{array}{cc}i & 0 \\ 0 & -i\end{array}\right)$, and hence

$$
\begin{aligned}
\exp (\mathbf{A} t) & =\mathbf{P} \exp (\mathbf{D} t) \mathbf{P}^{-1} \\
& =\left(\begin{array}{cc}
i+2 & 2-i \\
1 & 1
\end{array}\right)\left(\begin{array}{cc}
e^{t i} & 0 \\
0 & e^{-t i}
\end{array}\right)\left(\begin{array}{cc}
i+2 & 2-i \\
1 & 1
\end{array}\right)^{-1} \\
& =\frac{1}{2 i}\left(\begin{array}{cc}
(i+2) e^{t i} & (2-i) e^{-t i} \\
e^{t i} & e^{-t i}
\end{array}\right)\left(\begin{array}{cc}
1 & i-2 \\
-1 & i+2
\end{array}\right) \\
& =\left(\begin{array}{cc}
\cos t+2 \sin t & -5 \sin t \\
\sin t & \cos t-2 \sin t
\end{array}\right)
\end{aligned}
$$

which is a fundamental matrix for the system.

Exercise 6.6 Question 1(f)

Find a fundamental matrix for the system $\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}$ where \mathbf{A} is the following matrix.

$$
\left(\begin{array}{ll}
1 & -3 \\
3 & -5
\end{array}\right)
$$

Soution: Solving the characteristic equation, we have

$$
\begin{aligned}
\left|\begin{array}{cc}
\lambda-1 & 3 \\
-3 & \lambda+5
\end{array}\right| & =0 \\
(\lambda+2)^{2} & =0 \\
\lambda & =-2,-2
\end{aligned}
$$

We see that \mathbf{A} has only one eigenvalue $\lambda=-2$, but the associated eigenspace is of dimension 1 , which is spanned by $\xi=\binom{1}{1}$. Thus \mathbf{A} is not diagonalizable. So we need to find a generalized eigenvector of rank 2 . Now we take $\eta=\binom{1}{0}$, and let

$$
\begin{gathered}
\eta_{1}=(\mathbf{A}+2 \mathbf{I}) \eta=\binom{3}{3} \\
\eta_{2}=(\mathbf{A}+2 \mathbf{I})^{2} \eta=\mathbf{0}
\end{gathered}
$$

We see that η is a generalized eigenvector of rank 2 , we may let

$$
Q=\left[\begin{array}{ll}
\eta_{1} & \eta
\end{array}\right]=\left(\begin{array}{ll}
3 & 1 \\
3 & 0
\end{array}\right)
$$

then

$$
\mathbf{J}=\mathbf{Q}^{-1} \mathbf{A} \mathbf{Q}=\left(\begin{array}{cc}
-2 & 1 \\
0 & -2
\end{array}\right)
$$

Therefore a fundamental matrix for the system is

$$
\begin{aligned}
\boldsymbol{\Psi}(t)=\mathbf{Q} \exp (\mathbf{J} t) & =\left(\begin{array}{cc}
3 & 1 \\
3 & 0
\end{array}\right) \cdot e^{-2 t}\left(\begin{array}{ll}
1 & t \\
0 & 1
\end{array}\right) \\
& =e^{-2 t}\left(\begin{array}{cc}
3 & 1+3 t \\
3 & 3 t
\end{array}\right)
\end{aligned}
$$

Exercise 6.6 Question 1(g)

Find a fundamental matrix for the system $\mathbf{x}^{\prime}=\mathbf{A x}$ where \mathbf{A} is the following matrix.

$$
\left(\begin{array}{ccc}
1 & 1 & 1 \\
2 & 1 & -1 \\
-8 & -5 & -3
\end{array}\right)
$$

Soution: Solving the characteristic equation, we have

$$
\begin{aligned}
\left|\begin{array}{ccc}
\lambda-1 & -1 & -1 \\
-2 & \lambda-1 & 1 \\
8 & 5 & \lambda+3
\end{array}\right| & =0 \\
(\lambda+1)(\lambda+2)(\lambda-2) & =0 \\
\lambda & =-1,-2,2 .
\end{aligned}
$$

For $\lambda_{1}=-1$, the associated eigenvector is $\xi^{(1)}=\left(\begin{array}{c}-3 \\ 4 \\ 2\end{array}\right)$.
For $\lambda_{2}=-2$, the associated eigenvector is $\xi^{(2)}=\left(\begin{array}{c}-4 \\ 5 \\ 7\end{array}\right)$.
For $\lambda_{3}=2$, the associated eigenvector is $\xi^{(2)}=\left(\begin{array}{c}0 \\ 1 \\ -1\end{array}\right)$.
Let

$$
\mathbf{Q}=\left(\begin{array}{ccc}
-3 & -4 & 0 \\
4 & 5 & 1 \\
2 & 7 & -1
\end{array}\right)
$$

then

$$
\mathbf{D}=\mathbf{Q}^{-1} \mathbf{A} \mathbf{Q}=\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -2 & 0 \\
0 & 0 & 2
\end{array}\right)
$$

Therefore a fundamental matrix for the system is

$$
\begin{aligned}
\mathbf{\Psi}(t)=\mathbf{Q} \exp (\mathbf{D} t) & =\left(\begin{array}{ccc}
-3 & -4 & 0 \\
4 & 5 & 1 \\
2 & 7 & -1
\end{array}\right)\left(\begin{array}{ccc}
e^{-t} & 0 & 0 \\
0 & e^{-2 t} & 0 \\
0 & 0 & e^{2 t}
\end{array}\right) \\
& =\left(\begin{array}{ccc}
-3 e^{-t} & -4 e^{-2 t} & 0 \\
4 e^{-t} & 5 e^{-2 t} & e^{2 t} \\
2 e^{-t} & 7 e^{-2 t} & -e^{2 t}
\end{array}\right)
\end{aligned}
$$

Exercise 6.6 Question $1(\mathrm{j})$

Find a fundamental matrix for the system $\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}$ where \mathbf{A} is the following matrix.

$$
\left(\begin{array}{ccc}
3 & 1 & 3 \\
2 & 2 & 2 \\
-1 & 0 & 1
\end{array}\right)
$$

Soution: Solving the characteristic equation, we have

$$
\begin{aligned}
\left|\begin{array}{ccc}
\lambda-3 & -1 & -3 \\
-2 & \lambda-2 & -2 \\
1 & 0 & \lambda-1
\end{array}\right| & =0 \\
& \\
(\lambda-2)^{3} & =0 \\
\lambda & =2
\end{aligned}
$$

We see that \mathbf{A} has only one eigenvalue $\lambda=2$, but the associated eigenspace is of dimension 1 , which is spanned by $\xi=\left(\begin{array}{c}1 \\ 2 \\ -1\end{array}\right)$. Thus \mathbf{A} is not diagonalizable. So we need to find a generalized eigenvector of rank 3 . Now we take $\eta=\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)$, and let

$$
\begin{gathered}
\eta_{1}=(\mathbf{A}-2 \mathbf{I}) \eta=\left(\begin{array}{c}
2 \\
2 \\
-1
\end{array}\right) \\
\eta_{2}=(\mathbf{A}-2 \mathbf{I})^{2} \eta=\left(\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right) \\
\eta_{3}=(\mathbf{A}-2 \mathbf{I})^{3} \eta=\mathbf{0}
\end{gathered}
$$

We see that η is a generalized eigenvector of rank 3 , we may let

$$
Q=\left[\begin{array}{lll}
\eta_{2} & \eta_{1} & \eta
\end{array}\right]=\left(\begin{array}{ccc}
1 & 2 & 1 \\
2 & 2 & 1 \\
-1 & -1 & 0
\end{array}\right)
$$

then

$$
\mathbf{J}=\mathbf{Q}^{-1} \mathbf{A} \mathbf{Q}=\left(\begin{array}{ccc}
2 & 1 & 0 \\
0 & 2 & 1 \\
0 & 0 & 2
\end{array}\right)
$$

Therefore a fundamental matrix for the system is

$$
\begin{aligned}
\mathbf{\Psi}(t)=\mathbf{Q} \exp (\mathbf{J} t) & =\left(\begin{array}{ccc}
1 & 2 & 1 \\
2 & 2 & 1 \\
-1 & -1 & 0
\end{array}\right) \cdot e^{2 t}\left(\begin{array}{ccc}
1 & t & \frac{t^{2}}{2} \\
0 & 1 & t \\
0 & 0 & 1
\end{array}\right) \\
& =e^{2 t}\left(\begin{array}{ccc}
1 & 2+t & \frac{t^{2}}{2}+2 t+1 \\
2 & 2+2 t & t^{2}+2 t+1 \\
-1 & -1-t & -\frac{t^{2}}{2}-t
\end{array}\right)
\end{aligned}
$$

Exercise 6.6 Question 2(a)

Find the fundamental matrix $\boldsymbol{\Psi}$ which satisfies $\boldsymbol{\Psi}(0)=\boldsymbol{\Psi}_{0}$ for the system $\mathbf{x}^{\prime}=\mathbf{A x}$ for the given matrices \mathbf{A} and $\boldsymbol{\Psi}_{0}$.

$$
\mathbf{A}=\left(\begin{array}{cc}
3 & 4 \\
-1 & -2
\end{array}\right) ; \quad \mathbf{\Psi}_{0}=\left(\begin{array}{cc}
2 & 0 \\
1 & -1
\end{array}\right)
$$

Soution: Solving the characteristic equation, we have

$$
\begin{aligned}
\left|\begin{array}{cc}
\lambda-3 & -4 \\
1 & \lambda+2
\end{array}\right| & =0 \\
(\lambda+1)(\lambda-2) & =0 \\
\lambda & =-1,2
\end{aligned}
$$

For $\lambda_{1}=-1$, the associated eigenvector is $\xi^{(1)}=\binom{-1}{1}$.
For $\lambda_{2}=2$, the associated eigenvector is $\xi^{(2)}=\binom{-4}{1}$.
Let $\mathbf{P}=\left(\begin{array}{cc}-1 & -4 \\ 1 & 1\end{array}\right)$, then we have $\mathbf{D}=\mathbf{P}^{-1} \mathbf{A} \mathbf{P}=\left(\begin{array}{cc}-1 & 0 \\ 0 & 2\end{array}\right)$, and hence

$$
\begin{aligned}
\exp (\mathbf{A} t) & =\mathbf{P} \exp (\mathbf{D} t) \mathbf{P}^{-1} \\
& =\left(\begin{array}{cc}
-1 & -4 \\
1 & 1
\end{array}\right)\left(\begin{array}{cc}
e^{-t} & 0 \\
0 & e^{2 t}
\end{array}\right)\left(\begin{array}{cc}
-1 & -4 \\
1 & 1
\end{array}\right)^{-1} \\
& =\left(\begin{array}{cc}
-e^{-t} & -4 e^{2 t} \\
e^{-t} & e^{2 t}
\end{array}\right) \cdot \frac{1}{3}\left(\begin{array}{cc}
1 & 4 \\
-1 & -1
\end{array}\right) \\
& =\frac{1}{3}\left(\begin{array}{cc}
-e^{-t}+4 e^{2 t} & -4 e^{-t}+4 e^{2 t} \\
e^{-t}-e^{2 t} & 4 e^{-t}-e^{2 t}
\end{array}\right)
\end{aligned}
$$

Therefore the required fundamental matrix with initial condition is

$$
\begin{aligned}
\boldsymbol{\Psi}(t) & =\exp (\mathbf{A} t) \boldsymbol{\Psi}_{0} \\
& =\frac{1}{3}\left(\begin{array}{cc}
-e^{-t}+4 e^{2 t} & -4 e^{-t}+4 e^{2 t} \\
e^{-t}-e^{2 t} & 4 e^{-t}-e^{2 t}
\end{array}\right)\left(\begin{array}{cc}
2 & 0 \\
1 & -1
\end{array}\right) \\
& =\frac{1}{3}\left(\begin{array}{cc}
-6 e^{-t}+12 e^{2 t} & 4 e^{-t}-4 e^{2 t} \\
6 e^{-t}-3 e^{2 t} & -4 e^{-t}+e^{2 t}
\end{array}\right) .
\end{aligned}
$$

Exercise 6.6 Question 2(c)

Find the fundamental matrix $\boldsymbol{\Psi}$ which satisfies $\boldsymbol{\Psi}(0)=\boldsymbol{\Psi}_{0}$ for the system $\mathbf{x}^{\prime}=\mathbf{A x}$ for the given matrices \mathbf{A} and $\boldsymbol{\Psi}_{0}$.

$$
\mathbf{A}=\left(\begin{array}{ccc}
3 & 0 & 0 \\
-4 & 7 & -4 \\
-2 & 2 & 1
\end{array}\right) ; \quad \boldsymbol{\Psi}_{0}=\left(\begin{array}{ccc}
2 & 0 & -1 \\
0 & -3 & 1 \\
-1 & 1 & 0
\end{array}\right)
$$

Soution: Solving the characteristic equation, we have

$$
\begin{aligned}
\left|\begin{array}{ccc}
\lambda-3 & 0 & 0 \\
4 & \lambda-7 & 4 \\
2 & -2 & \lambda-1
\end{array}\right| & =0 \\
(\lambda-3)^{2}(\lambda-5) & =0 \\
\lambda & =3,3,5 .
\end{aligned}
$$

For $\lambda_{1}=\lambda_{2}=3$, the associated eigenvector is $\xi^{(1)}=\left(\begin{array}{c}1 \\ 1 \\ 0\end{array}\right)$ and $\xi^{(2)}=\left(\begin{array}{c}1 \\ 0 \\ -1\end{array}\right)$.
For $\lambda_{3}=5$, the associated eigenvector is $\xi^{(2)}=\left(\begin{array}{l}0 \\ 2 \\ 1\end{array}\right)$.
Let $\mathbf{P}=\left(\begin{array}{ccc}1 & 1 & 0 \\ 1 & 0 & 2 \\ 0 & -1 & 1\end{array}\right)$, then we have $\mathbf{D}=\mathbf{P}^{-1} \mathbf{A} \mathbf{P}=\left(\begin{array}{ccc}3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 5\end{array}\right)$, and hence

$$
\begin{aligned}
\exp (\mathbf{A} t) & =\mathbf{P} \exp (\mathbf{D} t) \mathbf{P}^{-1} \\
& =\left(\begin{array}{ccc}
1 & 1 & 0 \\
1 & 0 & 2 \\
0 & -1 & 1
\end{array}\right)\left(\begin{array}{ccc}
e^{3 t} & 0 & 0 \\
0 & e^{3 t} & 0 \\
0 & 0 & e^{5 t}
\end{array}\right)\left(\begin{array}{ccc}
2 & -1 & 2 \\
-1 & 1 & -2 \\
-1 & 1 & 1
\end{array}\right) \\
& =\left(\begin{array}{ccc}
e^{3 t} & e^{3 t} & 0 \\
e^{3 t} & 0 & 2 e^{5 t} \\
0 & -e^{3 t} & e^{5 t}
\end{array}\right)\left(\begin{array}{ccc}
2 & -1 & 2 \\
-1 & 1 & -2 \\
-1 & 1 & 1
\end{array}\right) \\
& =\left(\begin{array}{ccc}
e^{3 t} & 0 & 0 \\
2 e^{3 t}-2 e^{5 t} & -e^{3 t}+2 e^{5 t} & 2 e^{3 t}-2 e^{5 t} \\
e^{3 t}-e^{5 t} & -e^{3 t}+e^{5 t} & 2 e^{3 t}-e^{5 t}
\end{array}\right)
\end{aligned}
$$

Therefore the required fundamental matrix with initial condition is

$$
\begin{aligned}
\boldsymbol{\Psi}(t) & =\exp (\mathbf{A} t) \mathbf{\Psi}_{0} \\
& =\left(\begin{array}{ccc}
e^{3 t} & 0 & 0 \\
2 e^{3 t}-2 e^{5 t} & -e^{3 t}+2 e^{5 t} & 2 e^{3 t}-2 e^{5 t} \\
e^{3 t}-e^{5 t} & -e^{3 t}+e^{5 t} & 2 e^{3 t}-e^{5 t}
\end{array}\right)\left(\begin{array}{ccc}
2 & 0 & -1 \\
0 & -3 & 1 \\
-1 & 1 & 0
\end{array}\right) \\
& =\left(\begin{array}{ccc}
2 e^{3 t} & 0 & -e^{3 t} \\
2 e^{3 t}-2 e^{5 t} & 5 e^{3 t}-8 e^{5 t} & -3 e^{3 t}+4 e^{5 t} \\
-e^{5 t} & 5 e^{3 t}-4 e^{5 t} & -2 e^{3 t}+2 e^{5 t}
\end{array}\right)
\end{aligned}
$$

Exercise 6.7 Question 1(a)

Use the method of variation of parameters to find a particular solution for each of the following non-homogeneous equations.

$$
\mathbf{x}^{\prime}=\left(\begin{array}{ll}
1 & 2 \\
4 & 3
\end{array}\right) \mathbf{x}+\binom{-6 e^{5 t}}{6 e^{5 t}}
$$

Soution: Define the matrix \mathbf{A} and the vector $\mathbf{g}(t)$ by

$$
\mathbf{A}=\left(\begin{array}{ll}
1 & 2 \\
4 & 3
\end{array}\right) \text { and } \mathbf{g}(t)=\binom{-6 e^{5 t}}{6 e^{5 t}}
$$

Solving the characteristic equation, we have

$$
\begin{aligned}
\left|\begin{array}{cc}
\lambda-1 & -2 \\
-4 & \lambda-3
\end{array}\right| & =0 \\
\lambda^{2}-4 \lambda-5 & =0 \\
\lambda & =-1,5 .
\end{aligned}
$$

For $\lambda_{1}=-1$, the associated eigenvector is $\xi^{(1)}=\binom{-1}{1}$.
For $\lambda_{2}=2$, the associated eigenvector is $\xi^{(2)}=\binom{1}{2}$.
Let $\mathbf{P}=\left(\begin{array}{cc}-1 & 1 \\ 1 & 2\end{array}\right)$, then we have $\mathbf{D}=\mathbf{P}^{-1} \mathbf{A} \mathbf{P}=\left(\begin{array}{cc}-1 & 0 \\ 0 & 5\end{array}\right)$.
Therefore a fundamental matrix for the system is

$$
\begin{aligned}
\boldsymbol{\Psi}(t)=\mathbf{P} \exp (\mathbf{D} t) & =\left(\begin{array}{cc}
-1 & 1 \\
1 & 2
\end{array}\right)\left(\begin{array}{cc}
e^{-t} & 0 \\
0 & e^{5 t}
\end{array}\right) \\
& =\left(\begin{array}{cc}
-e^{-t} & e^{5 t} \\
e^{-t} & 2 e^{5 t}
\end{array}\right)
\end{aligned}
$$

Now

$$
\begin{aligned}
\mathbf{\Psi}^{-1} \mathbf{g} & =\left(\begin{array}{cc}
-e^{-t} & e^{5 t} \\
e^{-t} & 2 e^{5 t}
\end{array}\right)^{-1}\binom{-6 e^{5 t}}{6 e^{5 t}} \\
& =\frac{1}{-3 e^{4 t}}\left(\begin{array}{cc}
2 e^{5 t} & -e^{5 t} \\
-e^{-t} & -e^{-t}
\end{array}\right)\binom{-6 e^{5 t}}{6 e^{5 t}} \\
& =\frac{1}{-3 e^{4 t}}\binom{-18 e^{10 t}}{0} \\
& =\binom{6 e^{6 t}}{0}
\end{aligned}
$$

Thus

$$
\begin{aligned}
\int \mathbf{\Psi}^{-1} \mathbf{g} d t & =\int\binom{6 e^{6 t}}{0} d t \\
& =\binom{e^{6 t}+c_{1}}{c_{2}}
\end{aligned}
$$

Therefore a particular solution is

$$
\begin{aligned}
\mathbf{x}_{p} & =\left(\begin{array}{cc}
-e^{-t} & e^{5 t} \\
e^{-t} & 2 e^{5 t}
\end{array}\right)\binom{e^{6 t}}{0} \\
& =\binom{-e^{5 t}}{e^{5 t}}
\end{aligned}
$$

Exercise 6.7 Question 1(c)

Use the method of variation of parameters to find a particular solution for each of the following non-homogeneous equations.

$$
\mathbf{x}^{\prime}=\left(\begin{array}{ll}
2 & -1 \\
4 & -3
\end{array}\right) \mathbf{x}+\binom{0}{9 e^{t}}
$$

Soution: Define the matrix \mathbf{A} and the vector $\mathbf{g}(t)$ by

$$
\mathbf{A}=\left(\begin{array}{cc}
2 & -1 \\
4 & -3
\end{array}\right) \text { and } \mathbf{g}(t)=\binom{0}{9 e^{t}}
$$

Solving the characteristic equation, we have

$$
\begin{aligned}
\left|\begin{array}{cc}
\lambda-2 & 1 \\
-4 & \lambda+3
\end{array}\right| & =0 \\
\lambda^{2}+\lambda-2 & =0, \\
\lambda & =-2,1 .
\end{aligned}
$$

For $\lambda_{1}=-2$, the associated eigenvector is $\xi^{(1)}=\binom{1}{4}$.
For $\lambda_{2}=1$, the associated eigenvector is $\xi^{(2)}=\binom{1}{1}$.

Let $\mathbf{P}=\left(\begin{array}{ll}1 & 1 \\ 4 & 1\end{array}\right)$, then we have $\mathbf{D}=\mathbf{P}^{-1} \mathbf{A} \mathbf{P}=\left(\begin{array}{cc}-2 & 0 \\ 0 & 1\end{array}\right)$.
Therefore a fundamental matrix for the system is

$$
\begin{aligned}
\mathbf{\Psi}(t)=\mathbf{P} \exp (\mathbf{D} t) & =\left(\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right)\left(\begin{array}{cc}
e^{-2 t} & 0 \\
0 & e^{t}
\end{array}\right) \\
& =\left(\begin{array}{cc}
e^{-2 t} & e^{t} \\
4 e^{-2 t} & e^{t}
\end{array}\right)
\end{aligned}
$$

Now

$$
\begin{aligned}
\mathbf{\Psi}^{-1} \mathbf{g} & =\left(\begin{array}{cc}
e^{-2 t} & e^{t} \\
4 e^{-2 t} & e^{t}
\end{array}\right)^{-1}\binom{0}{9 e^{t}} \\
& =\frac{1}{-3 e^{-t}}\left(\begin{array}{cc}
e^{t} & -e^{t} \\
-4 e^{-2 t} & e^{-2 t}
\end{array}\right)\binom{0}{9 e^{t}} \\
& =\frac{1}{-3 e^{-t}}\binom{-9 e^{2 t}}{9 e^{-t}} \\
& =\binom{3 e^{3 t}}{-3}
\end{aligned}
$$

Thus

$$
\begin{aligned}
\int \mathbf{\Psi}^{-1} \mathbf{g} d t & =\int\binom{3 e^{3 t}}{-3} d t \\
& =\binom{e^{3 t}+c_{1}}{-3 t+c_{2}}
\end{aligned}
$$

Therefore a particular solution is

$$
\begin{aligned}
\mathbf{x}_{p} & =\left(\begin{array}{cc}
e^{-2 t} & e^{t} \\
4 e^{-2 t} & e^{t}
\end{array}\right)\binom{e^{3 t}}{-3 t} \\
& =\binom{(1-3 t) e^{t}}{(4-3 t) e^{t}}
\end{aligned}
$$

