THE CHINESE UNIVERSITY OF HONG KONG
 Department of Mathematics
 MMAT5520

Differential Equations \& Linear Algebra
 Suggested Solution for Assignment 4 Prepared by CHEUNG Siu Wun

Exercise 5.2 Question 1(b)

Diagonalize the following matrices.

$$
\left(\begin{array}{ll}
3 & -2 \\
4 & -1
\end{array}\right)
$$

Solution: Denote the given matrix by A. Solving the characteristic equation, we have

$$
\begin{aligned}
\operatorname{det}(\lambda \mathbf{I}-\mathbf{A}) & =0 \\
\left|\begin{array}{cc}
\lambda-3 & 2 \\
-4 & \lambda+1
\end{array}\right| & =0 \\
\lambda^{2}-2 \lambda+5 & =0 \\
\lambda & =1 \pm 2 i .
\end{aligned}
$$

For $\lambda_{1}=1+2 i$,

$$
\begin{aligned}
((1+2 i) \mathbf{I}-\mathbf{A}) \mathbf{v} & =\mathbf{0} \\
\left(\begin{array}{cc}
-2+2 i & 2 \\
-4 & 2+2 i
\end{array}\right) \mathbf{v} & =\mathbf{0}
\end{aligned}
$$

Thus $\mathbf{v}_{1}=(1,1-i)^{T}$ is an eigenvector associated with $\lambda_{1}=1+2 i$.
For $\lambda_{2}=1-2 i$,

$$
\begin{aligned}
((1-2 i) \mathbf{I}-\mathbf{A}) \mathbf{v} & =\mathbf{0} \\
\left(\begin{array}{cc}
-2+2 i & 2 \\
-4 & 2+2 i
\end{array}\right) \mathbf{v} & =\mathbf{0}
\end{aligned}
$$

Thus $\mathbf{v}_{2}=(1,1+i)^{T}$ is an eigenvector associated with $\lambda_{2}=1-2 i$.
Since \mathbf{v}_{1} and \mathbf{v}_{2} are linearly independent, the matrix

$$
\mathbf{P}=\left(\begin{array}{ll}
\mathbf{v}_{1} & \mathbf{v}_{2}
\end{array}\right)=\left(\begin{array}{cc}
1 & 1 \\
1-i & 1+i
\end{array}\right)
$$

diagonalizes \mathbf{A} and

$$
\begin{aligned}
\mathbf{P}^{-1} \mathbf{A P} & =\left(\begin{array}{cc}
1 & 1 \\
1-i & 1+i
\end{array}\right)^{-1}\left(\begin{array}{ll}
3 & -2 \\
4 & -1
\end{array}\right)\left(\begin{array}{cc}
1 & 1 \\
1-i & 1+i
\end{array}\right) \\
& =\left(\begin{array}{cc}
1+2 i & 0 \\
0 & 1-2 i
\end{array}\right) .
\end{aligned}
$$

Exercise 5.2 Question 1(d)

Diagonalize the following matrices.

$$
\left(\begin{array}{ccc}
0 & -1 & 0 \\
0 & 0 & -1 \\
6 & 11 & 6
\end{array}\right)
$$

Solution: Denote the given matrix by A. Solving the characteristic equation, we have

$$
\begin{aligned}
\operatorname{det}(\lambda \mathbf{I}-\mathbf{A}) & =0 \\
\left|\begin{array}{ccc}
\lambda & 1 & 0 \\
0 & \lambda & 1 \\
-6 & -11 & \lambda-6
\end{array}\right| & =0 \\
\lambda^{3}-6 \lambda^{2}+11 \lambda-6 & =0 \\
\lambda & =1,2,3 .
\end{aligned}
$$

For $\lambda_{1}=1$,

$$
\begin{aligned}
(\mathbf{I}-\mathbf{A}) \mathbf{v} & =\mathbf{0} \\
\left(\begin{array}{ccc}
1 & 1 & 0 \\
0 & 1 & 1 \\
-6 & -11 & -5
\end{array}\right) \mathbf{v} & =\mathbf{0}
\end{aligned}
$$

Thus $\mathbf{v}_{1}=(1,-1,1)^{T}$ is an eigenvector associated with $\lambda_{1}=1$.
For $\lambda_{2}=2$,

$$
\begin{aligned}
(2 \mathbf{I}-\mathbf{A}) \mathbf{v} & =\mathbf{0} \\
\left(\begin{array}{ccc}
2 & 1 & 0 \\
0 & 2 & 1 \\
-6 & -11 & -4
\end{array}\right) \mathbf{v} & =\mathbf{0}
\end{aligned}
$$

Thus $\mathbf{v}_{2}=(1,-2,4)^{T}$ is an eigenvector associated with $\lambda_{2}=2$.
For $\lambda_{3}=3$,

$$
\begin{aligned}
(3 \mathbf{I}-\mathbf{A}) \mathbf{v} & =\mathbf{0} \\
\left(\begin{array}{ccc}
3 & 1 & 0 \\
0 & 3 & 1 \\
-6 & -11 & -3
\end{array}\right) \mathbf{v} & =\mathbf{0}
\end{aligned}
$$

Thus $\mathbf{v}_{3}=(1,-3,9)^{T}$ is an eigenvector associated with $\lambda_{3}=3$.
Since $\mathbf{v}_{1}, \mathbf{v}_{2}$ and \mathbf{v}_{3} are linearly independent, the matrix

$$
\mathbf{P}=\left(\begin{array}{lll}
\mathbf{v}_{1} & \mathbf{v}_{2} & \mathbf{v}_{3}
\end{array}\right)=\left(\begin{array}{ccc}
1 & 1 & 1 \\
-1 & -2 & -3 \\
1 & 4 & 9
\end{array}\right)
$$

diagonalizes \mathbf{A} and

$$
\begin{aligned}
\mathbf{P}^{-1} \mathbf{A} \mathbf{P} & =\left(\begin{array}{ccc}
1 & 1 & 1 \\
-1 & -2 & -3 \\
1 & 4 & 9
\end{array}\right)^{-1}\left(\begin{array}{ccc}
0 & -1 & 0 \\
0 & 0 & -1 \\
6 & 11 & 6
\end{array}\right)\left(\begin{array}{ccc}
1 & 1 & 1 \\
-1 & -2 & -3 \\
1 & 4 & 9
\end{array}\right) \\
& =\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{array}\right) .
\end{aligned}
$$

Exercise 5.2 Question 1(e)

Diagonalize the following matrices.

$$
\left(\begin{array}{ccc}
3 & -2 & 0 \\
0 & 1 & 0 \\
-4 & 4 & 1
\end{array}\right)
$$

Solution: Denote the given matrix by A. Solving the characteristic equation, we have

$$
\begin{aligned}
\operatorname{det}(\lambda \mathbf{I}-\mathbf{A}) & =0 \\
\left|\begin{array}{ccc}
\lambda-3 & 2 & 0 \\
0 & \lambda-1 & 0 \\
4 & -4 & \lambda-1
\end{array}\right| & =0 \\
\lambda^{3}-5 \lambda^{2}+7 \lambda-3 & =0 \\
\lambda & =1,1,3 .
\end{aligned}
$$

For $\lambda_{1}=\lambda_{2}=1$,

$$
\begin{array}{r}
(\mathbf{I}-\mathbf{A}) \mathbf{v}=\mathbf{0} \\
\left(\begin{array}{ccc}
-2 & 2 & 0 \\
0 & 0 & 0 \\
4 & -4 & 0
\end{array}\right) \mathbf{v}=\mathbf{0}
\end{array}
$$

Thus $\mathbf{v}_{1}=(0,0,1)^{T}$ and $\mathbf{v}_{2}=(1,1,0)^{T}$ are two eigenvectors associated with $\lambda_{1}=$ $\lambda_{2}=1$. The set $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ constitutes a basis for the eigenspace associated with eigenvalue $\lambda_{1}=\lambda_{2}=1$.
For $\lambda_{3}=3$,

$$
\begin{gathered}
(3 \mathbf{I}-\mathbf{A}) \mathbf{v}=\mathbf{0} \\
\left(\begin{array}{ccc}
0 & 2 & 0 \\
0 & 2 & 0 \\
4 & -4 & 2
\end{array}\right) \mathbf{v}=\mathbf{0}
\end{gathered}
$$

Thus $\mathbf{v}_{3}=(-1,0,2)^{T}$ is an eigenvector associated with $\lambda_{3}=3$.

Since $\mathbf{v}_{1}, \mathbf{v}_{2}$ and \mathbf{v}_{3} are linearly independent, the matrix

$$
\mathbf{P}=\left(\begin{array}{lll}
\mathbf{v}_{1} & \mathbf{v}_{2} & \mathbf{v}_{3}
\end{array}\right)=\left(\begin{array}{ccc}
0 & 1 & -1 \\
0 & 1 & 0 \\
1 & 0 & 2
\end{array}\right)
$$

diagonalizes \mathbf{A} and

$$
\begin{aligned}
\mathbf{P}^{-1} \mathbf{A} \mathbf{P} & =\left(\begin{array}{ccc}
0 & 1 & -1 \\
0 & 1 & 0 \\
1 & 0 & 2
\end{array}\right)^{-1}\left(\begin{array}{ccc}
3 & -2 & 0 \\
0 & 1 & 0 \\
-4 & 4 & 1
\end{array}\right)\left(\begin{array}{ccc}
0 & 1 & -1 \\
0 & 1 & 0 \\
1 & 0 & 2
\end{array}\right) \\
& =\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 3
\end{array}\right) .
\end{aligned}
$$

Exercise 5.2 Question 2(a)

Show that that following matrices are not diagonalizable.

$$
\left(\begin{array}{cc}
3 & 1 \\
-1 & 1
\end{array}\right)
$$

Solution: Denote the given matrix by A. Solving the characteristic equation, we have

$$
\begin{aligned}
\operatorname{det}(\lambda \mathbf{I}-\mathbf{A}) & =0 \\
\left|\begin{array}{cc}
\lambda-3 & -1 \\
1 & \lambda-1
\end{array}\right| & =0 \\
\lambda^{2}-4 \lambda+4 & =0 \\
\lambda & =2,2 .
\end{aligned}
$$

For $\lambda_{1}=\lambda_{2}=2$,

$$
\begin{aligned}
(2 \mathbf{I}-\mathbf{A}) \mathbf{v} & =\mathbf{0} \\
\left(\begin{array}{cc}
-1 & -1 \\
1 & 1
\end{array}\right) \mathbf{v} & =\mathbf{0}
\end{aligned}
$$

Thus $\mathbf{v}_{1}=(-1,1)^{T}$ is an eigenvector associated with $\lambda_{1}=\lambda_{2}=2$. Thus $\left\{\mathbf{v}_{1}\right\}$ constitutes a basis for the eigenspace associated with eigenvalue $\lambda_{1}=\lambda_{2}=2$. Note that $\lambda_{1}=\lambda_{2}=2$ is a root of multiplicity two of the characteristic equation, but we can only find one linearly independent eigenvector for $\lambda_{1}=\lambda_{2}=2$. Therefore \mathbf{A} is not diagonalizable.

Exercise 5.2 Question 2(b)

Show that that following matrices are not diagonalizable.

$$
\left(\begin{array}{ccc}
-1 & 1 & 0 \\
-4 & 3 & 0 \\
1 & 0 & 2
\end{array}\right)
$$

Solution: Denote the given matrix by A. Solving the characteristic equation, we have

$$
\begin{aligned}
\operatorname{det}(\lambda \mathbf{I}-\mathbf{A}) & =0 \\
\left|\begin{array}{ccc}
\lambda+1 & -1 & 0 \\
4 & \lambda-3 & 0 \\
-1 & 0 & \lambda-2
\end{array}\right| & =0 \\
\lambda^{3}-4 \lambda^{2}+5 \lambda-2 & =0 \\
\lambda & =1,1,2 .
\end{aligned}
$$

For $\lambda_{1}=\lambda_{2}=1$,

$$
\begin{aligned}
(\mathbf{I}-\mathbf{A}) \mathbf{v} & =\mathbf{0} \\
\left(\begin{array}{ccc}
2 & -1 & 0 \\
4 & -2 & 0 \\
-1 & 0 & -1
\end{array}\right) \mathbf{v} & =\mathbf{0}
\end{aligned}
$$

Thus $\mathbf{v}_{1}=(-1,-2,1)^{T}$ is an eigenvector associated with $\lambda_{1}=\lambda_{2}=1$. Thus $\left\{\mathbf{v}_{1}\right\}$ constitutes a basis for the eigenspace associated with eigenvalue $\lambda_{1}=\lambda_{2}=1$. Note that $\lambda_{1}=\lambda_{2}=1$ is a root of multiplicity two of the characteristic equation, but we can only find one linearly independent eigenvector for $\lambda_{1}=\lambda_{2}=1$. Therefore \mathbf{A} is not diagonalizable.

Exercise 5.2 Question 7

Let $\mathbf{A}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ be a 2×2 matrix. Show that if $(a-d)^{2}+4 b c \neq 0$, then \mathbf{A} is diagonalizable.
Solution: The characteristic polynomial of \mathbf{A} is given by

$$
\begin{aligned}
p(x) & =\operatorname{det}(x \mathbf{I}-\mathbf{A}) \\
& =\left|\begin{array}{cc}
x-a & -b \\
-c & x-d
\end{array}\right| \\
& =(x-a)(x-d)-(-b)(-c) \\
& =x^{2}-(a+d) x+(a d-b c) .
\end{aligned}
$$

The discriminant of $p(x)$ for the characteristic equation $p(x)=0$ is given by

$$
\begin{aligned}
\Delta & =(-(a+d))^{2}-4(1)(a d-b c) \\
& =a^{2}+2 a d+d^{2}-4 a d+4 b c \\
& =(a-d)^{2}+4 b c .
\end{aligned}
$$

Suppose $(a-d)^{2}+4 b c \neq 0$. Then $\Delta \neq 0$ and $p(x)=0$ has 2 distinct roots. This implies the 2×2 matrix \mathbf{A} has 2 distinct eigenvalues. Hence, by Theorem 5.2.12, A is diagonalizable.

Exercise 5.2 Question 10

Prove that if \mathbf{A} is a non-singular matrix, then for any matrix \mathbf{B}, we have $\mathbf{A B}$ is similar to $\mathbf{B A}$.

Solution: Take $\mathbf{P}=\mathbf{A}$. Then \mathbf{P} is non-singular and

$$
\mathbf{P}^{-1}(\mathbf{A B}) \mathbf{P}=\mathbf{A}^{-1}(\mathbf{A B}) \mathbf{A}=\left(\mathbf{A}^{-1} \mathbf{A}\right)(\mathbf{B A})=\mathbf{I}(\mathbf{B A})=\mathbf{B A} .
$$

Hence $\mathbf{A B}$ is similar to $\mathbf{B A}$.

Exercise 5.3 Question 1(a)

Compute \mathbf{A}^{5} where \mathbf{A} is the given matrix.

$$
\left(\begin{array}{ll}
5 & -6 \\
3 & -4
\end{array}\right)
$$

Solution: Solving the characteristic equation, we have

$$
\begin{aligned}
\operatorname{det}(\lambda \mathbf{I}-\mathbf{A}) & =0 \\
\left|\begin{array}{cc}
\lambda-5 & 6 \\
-3 & \lambda+4
\end{array}\right| & =0 \\
\lambda^{2}-\lambda+2 & =0 \\
\lambda & =-1,2 .
\end{aligned}
$$

For $\lambda_{1}=-1$,

$$
\begin{aligned}
(-\mathbf{I}-\mathbf{A}) \mathbf{v} & =\mathbf{0} \\
\left(\begin{array}{cc}
-6 & 6 \\
3 & -3
\end{array}\right) \mathbf{v} & =\mathbf{0}
\end{aligned}
$$

Thus $\mathbf{v}_{1}=(1,1)^{T}$ is an eigenvector associated with $\lambda_{1}=-1$.
For $\lambda_{2}=2$,

$$
\begin{aligned}
(2 \mathbf{I}-\mathbf{A}) \mathbf{v} & =\mathbf{0} \\
\left(\begin{array}{cc}
-3 & 6 \\
-3 & 6
\end{array}\right) \mathbf{v} & =\mathbf{0}
\end{aligned}
$$

Thus $\mathbf{v}_{2}=(2,1)^{T}$ is an eigenvector associated with $\lambda_{2}=2$.

Since \mathbf{v}_{1} and \mathbf{v}_{2} are linearly independent, the matrix

$$
\mathbf{P}=\left(\begin{array}{ll}
\mathbf{v}_{1} & \mathbf{v}_{2}
\end{array}\right)=\left(\begin{array}{ll}
1 & 2 \\
1 & 1
\end{array}\right)
$$

diagonalizes \mathbf{A} and

$$
\begin{aligned}
\mathbf{P}^{-1} \mathbf{A} \mathbf{P} & =\left(\begin{array}{ll}
1 & 2 \\
1 & 1
\end{array}\right)^{-1}\left(\begin{array}{ll}
5 & -6 \\
3 & -4
\end{array}\right)\left(\begin{array}{ll}
1 & 2 \\
1 & 1
\end{array}\right) \\
& =\left(\begin{array}{cc}
-1 & 0 \\
0 & 2
\end{array}\right)=\mathbf{D} .
\end{aligned}
$$

Hence

$$
\mathbf{A}=\mathbf{P D P}^{-1}
$$

and therefore

$$
\begin{aligned}
\mathbf{A}^{5} & =\left(\mathbf{P D P}^{-1}\right)^{5} \\
& =\mathbf{P D}^{5} \mathbf{P}^{-1} \\
& =\left(\begin{array}{ll}
1 & 2 \\
1 & 1
\end{array}\right)\left(\begin{array}{cc}
-1 & 0 \\
0 & 32
\end{array}\right)\left(\begin{array}{ll}
1 & 2 \\
1 & 1
\end{array}\right)^{-1} \\
& =\left(\begin{array}{cc}
65 & -66 \\
33 & -34
\end{array}\right) .
\end{aligned}
$$

Exercise 5.3 Question 1(e)

Compute \mathbf{A}^{5} where \mathbf{A} is the given matrix.

$$
\left(\begin{array}{ccc}
1 & 2 & -1 \\
2 & 4 & -2 \\
3 & 6 & -3
\end{array}\right)
$$

Solution: Solving the characteristic equation, we have

$$
\begin{aligned}
\operatorname{det}(\lambda \mathbf{I}-\mathbf{A}) & =0 \\
\left|\begin{array}{ccc}
\lambda-1 & -2 & 1 \\
-2 & \lambda-4 & 2 \\
-3 & -6 & \lambda+3
\end{array}\right| & =0 \\
\lambda^{3}-2 \lambda^{2} & =0 \\
\lambda & =0,0,2 .
\end{aligned}
$$

For $\lambda_{1}=\lambda_{2}=0$,

$$
\begin{aligned}
-\mathbf{A v} & =\mathbf{0} \\
\left(\begin{array}{ccc}
-1 & -2 & 1 \\
-2 & -4 & 2 \\
-3 & -6 & 3
\end{array}\right) \mathbf{v} & =\mathbf{0}
\end{aligned}
$$

Thus $\mathbf{v}_{1}=(-2,1,0)^{T}$ and $\mathbf{v}_{2}=(1,0,1)^{T}$ are two eigenvectors associated with $\lambda_{1}=\lambda_{2}=0$. The set $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ constitutes a basis for the eigenspace associated with eigenvalue $\lambda_{1}=\lambda_{2}=0$.
For $\lambda_{3}=2$,

$$
\begin{aligned}
(2 \mathbf{I}-\mathbf{A}) \mathbf{v} & =\mathbf{0} \\
\left(\begin{array}{ccc}
1 & -2 & 1 \\
-2 & -2 & 2 \\
-3 & -6 & 5
\end{array}\right) \mathbf{v} & =\mathbf{0}
\end{aligned}
$$

Thus $\mathbf{v}_{3}=(1,2,3)^{T}$ is an eigenvector associated with $\lambda_{3}=2$.
Since $\mathbf{v}_{1}, \mathbf{v}_{2}$ and \mathbf{v}_{3} are linearly independent, the matrix

$$
\mathbf{P}=\left(\begin{array}{lll}
\mathbf{v}_{1} & \mathbf{v}_{2} & \mathbf{v}_{3}
\end{array}\right)=\left(\begin{array}{ccc}
-2 & 1 & 1 \\
1 & 0 & 2 \\
0 & 1 & 3
\end{array}\right)
$$

diagonalizes \mathbf{A} and

$$
\begin{aligned}
\mathbf{P}^{-1} \mathbf{A P} & =\left(\begin{array}{ccc}
-2 & 1 & 1 \\
1 & 0 & 2 \\
0 & 1 & 3
\end{array}\right)^{-1}\left(\begin{array}{ccc}
1 & 2 & -1 \\
2 & 4 & -2 \\
3 & 6 & -3
\end{array}\right)\left(\begin{array}{ccc}
-2 & 1 & 1 \\
1 & 0 & 2 \\
0 & 1 & 3
\end{array}\right) \\
& =\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 2
\end{array}\right)=\mathbf{D} .
\end{aligned}
$$

Hence

$$
\mathbf{A}=\mathbf{P D P}^{-1}
$$

and therefore

$$
\begin{aligned}
\mathbf{A}^{5} & =\left(\mathbf{P D P}^{-1}\right)^{5} \\
& =\mathbf{P D}^{5} \mathbf{P}^{-1} \\
& =\left(\begin{array}{ccc}
-2 & 1 & 1 \\
1 & 0 & 2 \\
0 & 1 & 3
\end{array}\right)\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 32
\end{array}\right)\left(\begin{array}{ccc}
-2 & 1 & 1 \\
1 & 0 & 2 \\
0 & 1 & 3
\end{array}\right)^{-1} \\
& =\left(\begin{array}{ccc}
16 & 32 & -16 \\
32 & 64 & -32 \\
48 & 96 & -48
\end{array}\right) .
\end{aligned}
$$

Exercise 5.4 Question 1(a)

Find the minimal polynomial of \mathbf{A} where \mathbf{A} is the matrix given below. Then express \mathbf{A}^{4} and \mathbf{A}^{-1} as a polynomial in \mathbf{A} of smallest degree.

$$
\left(\begin{array}{ll}
5 & -4 \\
3 & -2
\end{array}\right)
$$

Solution: The characteristic polynomial of \mathbf{A} is given by

$$
\begin{aligned}
p(x) & =\operatorname{det}(x \mathbf{I}-\mathbf{A}) \\
& =\left|\begin{array}{cc}
x-5 & 4 \\
-3 & x+2
\end{array}\right| \\
& =(x-1)(x-2) .
\end{aligned}
$$

The minimal polynomial of \mathbf{A} is of the form

$$
m(x)=(x+1)^{m_{1}}(x-2)^{m_{2}}
$$

where $m_{1}=1$ and $m_{2}=1$. Therefore the minimal polynomial of \mathbf{A} is its characteristic polynomial

$$
m(x)=(x-1)(x-2)=p(x)
$$

We have

$$
\begin{aligned}
\mathbf{A}^{2} & =3 \mathbf{A}-2 \mathbf{I}, \\
\Longrightarrow \mathbf{A}^{4} & =\left(\mathbf{A}^{2}\right)^{2} \\
& =(3 \mathbf{A}-2 \mathbf{I})^{2} \\
& =9 \mathbf{A}^{2}-12 \mathbf{A}+4 \mathbf{I} \\
& =9(3 \mathbf{A}-2 \mathbf{I})-12 \mathbf{A}+4 \mathbf{I} \\
& =15 \mathbf{A}-14 \mathbf{I} .
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
& \mathbf{A}^{2}=3 \mathbf{A}-2 \mathbf{I}, \\
\Longrightarrow & \mathbf{A}=3 \mathbf{I}-2 \mathbf{A}^{-1}, \\
\Longrightarrow & \mathbf{A}^{-1}=-\frac{1}{2} \mathbf{A}+\frac{3}{2} \mathbf{I} .
\end{aligned}
$$

Exercise 5.4 Question 1(b)

Find the minimal polynomial of \mathbf{A} where \mathbf{A} is the matrix given below. Then express \mathbf{A}^{4} and \mathbf{A}^{-1} as a polynomial in \mathbf{A} of smallest degree.

$$
\left(\begin{array}{ll}
3 & -2 \\
2 & -1
\end{array}\right)
$$

Solution: The characteristic polynomial of \mathbf{A} is given by

$$
\begin{aligned}
p(x) & =\operatorname{det}(x \mathbf{I}-\mathbf{A}) \\
& =\left|\begin{array}{cc}
x-3 & 2 \\
-2 & x+1
\end{array}\right| \\
& =(x-1)^{2} .
\end{aligned}
$$

The minimal polynomial of \mathbf{A} is of the form

$$
m(x)=(x-1)^{m_{1}},
$$

where $1 \leq m_{1} \leq 2$. Therefore the minimal polynomial of \mathbf{A} is either

$$
m(x)=x-1 \quad \text { or } \quad m(x)=(x-1)^{2}=p(x) .
$$

By direct computation,

$$
\mathbf{A}-\mathbf{I}=\left(\begin{array}{ll}
2 & -2 \\
2 & -2
\end{array}\right) \neq\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)=\mathbf{0}
$$

Hence the minimal polynomial of \mathbf{A} is

$$
m(x)=(x-1)^{2} .
$$

We have

$$
\begin{aligned}
\mathbf{A}^{2} & =2 \mathbf{A}-\mathbf{I}, \\
\Longrightarrow \mathbf{A}^{4} & =\left(\mathbf{A}^{2}\right)^{2} \\
& =(2 \mathbf{A}-\mathbf{I})^{2} \\
& =4 \mathbf{A}^{2}-4 \mathbf{A}+\mathbf{I} \\
& =4(2 \mathbf{A}-\mathbf{I})-4 \mathbf{A}+\mathbf{I} \\
& =4 \mathbf{A}-3 \mathbf{I} .
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
& \mathbf{A}^{2}=2 \mathbf{A}-\mathbf{I}, \\
\Longrightarrow & \mathbf{A}=2 \mathbf{I}-\mathbf{A}^{-1}, \\
\Longrightarrow & \mathbf{A}^{-1}=-\mathbf{A}+2 \mathbf{I} .
\end{aligned}
$$

Exercise 5.4 Question 1(d)

Find the minimal polynomial of \mathbf{A} where \mathbf{A} is the matrix given below. Then express \mathbf{A}^{4} and \mathbf{A}^{-1} as a polynomial in \mathbf{A} of smallest degree.

$$
\left(\begin{array}{ccc}
-1 & 1 & 0 \\
-4 & 3 & 0 \\
1 & 0 & 2
\end{array}\right)
$$

Solution: The characteristic polynomial of \mathbf{A} is given by

$$
\begin{aligned}
p(x) & =\operatorname{det}(x \mathbf{I}-\mathbf{A}) \\
& =\left|\begin{array}{ccc}
x+1 & -1 & 0 \\
4 & x-3 & 0 \\
-1 & 0 & x-2
\end{array}\right| \\
& =(x-1)^{2}(x-2) .
\end{aligned}
$$

The minimal polynomial of \mathbf{A} is of the form

$$
m(x)=(x-1)^{m_{1}}(x-2)^{m_{2}}
$$

where $1 \leq m_{1} \leq 2$ and $m_{2}=1$. Therefore the minimal polynomial of \mathbf{A} is either

$$
m(x)=(x-1)(x-2) \quad \text { or } \quad m(x)=(x-1)^{2}(x-2)=p(x) .
$$

By direct computation,

$$
\begin{aligned}
(\mathbf{A}-\mathbf{I})(\mathbf{A}-2 \mathbf{I}) & =\left(\begin{array}{ccc}
-2 & 1 & 0 \\
-4 & 2 & 0 \\
1 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
-3 & 1 & 0 \\
-4 & 1 & 0 \\
1 & 0 & 0
\end{array}\right) \\
& =\left(\begin{array}{ccc}
2 & -1 & 0 \\
4 & -2 & 0 \\
-2 & 1 & 0
\end{array}\right) \\
& \neq\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)=\mathbf{0} .
\end{aligned}
$$

Hence the minimal polynomial of \mathbf{A} is

$$
m(x)=(x-1)^{2}(x-2) .
$$

We have

$$
\begin{aligned}
\mathbf{A}^{3} & =4 \mathbf{A}^{2}-5 \mathbf{A}+2 \mathbf{I}, \\
\Longrightarrow \mathbf{A}^{4} & =(\mathbf{A})\left(\mathbf{A}^{3}\right) \\
& =(\mathbf{A})\left(4 \mathbf{A}^{2}-5 \mathbf{A}+2 \mathbf{I}\right) \\
& =4 \mathbf{A}^{3}-5 \mathbf{A}^{2}+2 \mathbf{A} \\
& =4\left(4 \mathbf{A}^{2}-5 \mathbf{A}+2 \mathbf{I}\right)-5 \mathbf{A}^{2}+2 \mathbf{A} \\
& =11 \mathbf{A}^{2}-18 \mathbf{A}+8 \mathbf{I} .
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
& \mathbf{A}^{3}=4 \mathbf{A}^{2}-5 \mathbf{A}+2 \mathbf{I}, \\
\Longrightarrow & \mathbf{A}^{2}=4 \mathbf{A}-5 \mathbf{I}+2 \mathbf{A}^{-1}, \\
\Longrightarrow & \mathbf{A}^{-1}=\frac{1}{2} \mathbf{A}^{2}-2 \mathbf{A}+\frac{5}{2} \mathbf{I} .
\end{aligned}
$$

Exercise 5.4 Question 1(e)

Find the minimal polynomial of \mathbf{A} where \mathbf{A} is the matrix given below. Then express \mathbf{A}^{4} and \mathbf{A}^{-1} as a polynomial in \mathbf{A} of smallest degree.

$$
\left(\begin{array}{ccc}
3 & 1 & 1 \\
2 & 4 & 2 \\
-1 & -1 & 1
\end{array}\right)
$$

Solution: The characteristic polynomial of \mathbf{A} is given by

$$
\begin{aligned}
p(x) & =\operatorname{det}(x \mathbf{I}-\mathbf{A}) \\
& =\left|\begin{array}{ccc}
x-3 & -1 & -1 \\
-2 & x-4 & -2 \\
1 & 1 & x-1
\end{array}\right| \\
& =(x-2)^{2}(x-4) .
\end{aligned}
$$

The minimal polynomial of \mathbf{A} is of the form

$$
m(x)=(x-2)^{m_{1}}(x-4)^{m_{2}}
$$

where $1 \leq m_{1} \leq 2$ and $m_{2}=1$. Therefore the minimal polynomial of \mathbf{A} is either

$$
m(x)=(x-2)(x-4) \quad \text { or } \quad m(x)=(x-2)^{2}(x-4)=p(x) .
$$

By direct computation,

$$
(\mathbf{A}-2 \mathbf{I})(\mathbf{A}-4 \mathbf{I})=\left(\begin{array}{ccc}
1 & 1 & 1 \\
2 & 2 & 2 \\
-1 & -1 & -1
\end{array}\right)\left(\begin{array}{ccc}
-1 & 1 & 1 \\
2 & 0 & 2 \\
-1 & -1 & -3
\end{array}\right)=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)=\mathbf{0}
$$

Hence the minimal polynomial of \mathbf{A} is

$$
m(x)=(x-2)(x-4) .
$$

We have

$$
\begin{aligned}
\mathbf{A}^{2} & =6 \mathbf{A}-8 \mathbf{I}, \\
\Longrightarrow \mathbf{A}^{4} & =\left(\mathbf{A}^{2}\right)^{2} \\
& =(6 \mathbf{A}-8 \mathbf{I})^{2} \\
& =36 \mathbf{A}^{2}-96 \mathbf{A}+64 \mathbf{I} \\
& =36(6 \mathbf{A}-8 \mathbf{I})-96 \mathbf{A}+64 \mathbf{I} \\
& =120 \mathbf{A}-224 \mathbf{I} .
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
& \mathbf{A}^{2}=6 \mathbf{A}-8 \mathbf{I}, \\
\Longrightarrow & \mathbf{A}=6 \mathbf{I}-8 \mathbf{A}^{-1}, \\
\Longrightarrow & \mathbf{A}^{-1}=-\frac{1}{8} \mathbf{A}+\frac{3}{4} \mathbf{I} .
\end{aligned}
$$

