THE CHINESE UNIVERSITY OF HONG KONG
 Department of Mathematics
 MMAT5520

Differential Equations \& Linear Algebra
 Suggested Solution for Assignment 3
 Prepared by CHEUNG Siu Wun

Exercise 4.2 Question 1(b)

Using the method of reduction of order to solve the equation given that $y_{1}(t)$ is a solution.

$$
t^{2} y^{\prime \prime}+4 t y^{\prime}+2 y=0 ; \quad y_{1}(t)=t^{-1}
$$

Solution: We set $y(t)=y_{1}(t) v(t)=t^{-1} v(t)$. Then

$$
\left\{\begin{array}{l}
y^{\prime}(t)=t^{-1} v^{\prime}(t)-t^{-2} v(t) \\
y^{\prime \prime}(t)=t^{-1} v^{\prime \prime}(t)-2 t^{-2} v^{\prime}(t)+2 t^{-3} v(t)
\end{array}\right.
$$

Thus the equation becomes

$$
\begin{aligned}
t^{2}\left(t^{-1} v^{\prime \prime}-2 t^{-2} v^{\prime}+2 t^{-3} v\right)+4 t\left(t^{-1} v^{\prime}-t^{-2} v\right)+2\left(t^{-1} v\right) & =0 \\
t v^{\prime \prime}+2 v^{\prime} & =0 .
\end{aligned}
$$

Making use of the substitution $u=v^{\prime}$, we have

$$
u^{\prime}+2 t^{-1} u=0
$$

This equation is a first-order linear ODE in u. An integrating factor is

$$
\exp \left(\int 2 t^{-1} d t\right)=\exp (2 \ln t)=t^{2}
$$

Multiplying both sides with t^{2}, we have

$$
\begin{aligned}
t^{2} u^{\prime}+2 t u & =0 \\
\frac{d}{d t}\left(t^{2} u\right) & =0 \\
t^{2} u & =-c_{1} \\
u & =-c_{1} t^{-2} \\
v^{\prime} & =-c_{1} t^{-2} \\
v & =c_{1} t^{-1}+c_{2} \\
y & =t^{-1}\left(c_{1} t^{-1}+c_{2}\right) \\
y & =c_{1} t^{-2}+c_{2} t^{-1} .
\end{aligned}
$$

Therefore the general solution is $y(t)=c_{1} t^{-2}+c_{2} t^{-1}$.

Exercise 4.3 Question 1(b)

Find the general solution of the following second order linear equations.

$$
y^{\prime \prime}+9 y=0 .
$$

Solution: Solving the characteristic equation

$$
\begin{aligned}
r^{2}+9 & =0 \\
r & = \pm 3 i .
\end{aligned}
$$

Thus the general solution is

$$
y=c_{1} \cos 3 t+c_{2} \sin 3 t
$$

Exercise 4.3 Question 1(d)

Find the general solution of the following second order linear equations.

$$
y^{\prime \prime}-8 y^{\prime}+16 y=0 .
$$

Solution: Solving the characteristic equation

$$
\begin{aligned}
r^{2}-8 r+16 & =0 \\
r & =4
\end{aligned}
$$

The characteristic equation has a double root $r=4$. Thus the general solution is

$$
y=c_{1} e^{4 t}+c_{2} t e^{4 t}
$$

Exercise 4.3 Question 1(e)

Find the general solution of the following second order linear equations.

$$
y^{\prime \prime}+4 y^{\prime}+13 y=0 .
$$

Solution: Solving the characteristic equation

$$
\begin{aligned}
r^{2}+4 r+13 & =0 \\
r & =-2 \pm 3 i .
\end{aligned}
$$

Thus the general solution is

$$
y=e^{-2 t}\left(c_{1} \cos 3 t+c_{2} \sin 3 t\right)
$$

Exercise 4.4 Question 1(e)

Use the method of undetermined coefficients to find the general solution of the following nonhomogeneous second order linear equations.

$$
y^{\prime \prime}+2 y^{\prime}+y=2 e^{-t} .
$$

Solution: Solving the characteristic equation

$$
\begin{aligned}
r^{2}+2 r+1 & =0 \\
r & =-1 .
\end{aligned}
$$

The characteristic equation has a double root $r=-1$. Thus the complementary function is

$$
y_{c}=c_{1} e^{-t}+c_{2} t e^{-t} .
$$

A particular solution is in the form

$$
y_{p}=A t^{2} e^{-t}
$$

where A is a constant to be determined. To find A, we have

$$
\left\{\begin{array}{l}
y_{p}^{\prime}=A\left(-t^{2}+2 t\right) e^{-t} \\
y_{p}^{\prime \prime}=A\left(t^{2}-4 t+2\right) e^{-t}
\end{array}\right.
$$

By comparing coefficients of

$$
\begin{aligned}
y_{p}^{\prime \prime}+2 y_{p}^{\prime}+y_{p} & =2 e^{-t} \\
A\left(t^{2}-4 t+2\right) e^{-t}+2 A\left(-t^{2}+2 t\right) e^{-t}+A t^{2} e^{-t} & =2 e^{-t} \\
2 A e^{-t} & =2 e^{-t}
\end{aligned}
$$

we have $A=1$ and a particular solution is

$$
y_{p}=t^{2} e^{-t} .
$$

Therefore the general solution is

$$
y=y_{c}+y_{p}=c_{1} e^{-t}+c_{2} t e^{-t}+t^{2} e^{-t} .
$$

Exercise 4.4 Question 1(f)

Use the method of undetermined coefficients to find the general solution of the following nonhomogeneous second order linear equations.

$$
y^{\prime \prime}-2 y^{\prime}+y=t e^{t}+4
$$

Solution: Solving the characteristic equation

$$
\begin{aligned}
r^{2}-2 r+1 & =0 \\
r & =1 .
\end{aligned}
$$

The characteristic equation has a double root $r=1$. Thus the complementary function is

$$
y_{c}=c_{1} e^{t}+c_{2} t e^{t} .
$$

A particular solution is in the form

$$
y_{p}=t^{2}\left((A t+B) e^{t}\right)+C=A t^{3} e^{t}+B t^{2} e^{t}+C
$$

where A, B, C are constants to be determined. To find A, B, C, we have

$$
\left\{\begin{array}{l}
y_{p}^{\prime}=A\left(t^{3}+3 t^{2}\right) e^{t}+B\left(t^{2}+2 t\right) e^{t} \\
y_{p}^{\prime \prime}=A\left(t^{3}+6 t^{2}+6 t\right) e^{t}+B\left(t^{2}+4 t+2\right) e^{t}
\end{array}\right.
$$

By comparing coefficients of

$$
\begin{aligned}
y_{p}^{\prime \prime}-2 y_{p}^{\prime}+y_{p} & =t e^{t}+4 \\
(6 A t+2 B) e^{t}+C & =t e^{t}+4
\end{aligned}
$$

we have

$$
\left\{\begin{array}{l}
A=\frac{1}{6}, \\
B=0, \\
C=4,
\end{array}\right.
$$

and a particular solution is

$$
y_{p}=\frac{1}{6} t^{3} e^{t}+4
$$

Therefore the general solution is

$$
y=y_{c}+y_{p}=c_{1} e^{t}+c_{2} t e^{t}+\frac{1}{6} t^{3} e^{t}+4
$$

Exercise 4.4 Question 2(a)

Write down a suitable form $y_{p}(t)$ of a particular solution of the following nonhomogeneous second order linear equations.

$$
y^{\prime \prime}+3 y^{\prime}=2 t^{4}+t^{2} e^{-3 t}+\sin 3 t
$$

Solution: Solving the characteristic equation

$$
\begin{aligned}
r^{2}+3 r & =0 \\
r & =0,-3 .
\end{aligned}
$$

Thus the complementary function is

$$
y_{c}=c_{1}+c_{2} e^{-3 t}
$$

A particular solution is in the form

$$
\begin{gathered}
y_{p}=t\left(A_{4} t^{4}+A_{3} t^{3}+A_{2} t^{2}+A_{1} t+A_{0}\right) \\
+t\left(B_{2} t^{2}+B_{1} t+B_{0}\right) e^{-3 t} \\
+\left(C_{0} \cos 3 t+D_{0} \sin 3 t\right)
\end{gathered}
$$

where $A_{0}, A_{1}, A_{2}, A_{3}, A_{4}, B_{0}, B_{1}, B_{2}, C_{0}, D_{0}$ are constants to be determined.

Exercise 4.4 Question 2(b)

Write down a suitable form $y_{p}(t)$ of a particular solution of the following nonhomogeneous second order linear equations.

$$
y^{\prime \prime}-5 y^{\prime}+6 y=e^{t} \cos 2 t+3 t e^{2 t} \sin t
$$

Solution: Solving the characteristic equation

$$
\begin{aligned}
r^{2}-5 r+6 & =0 \\
r & =2,3 .
\end{aligned}
$$

Thus the complementary function is

$$
y_{c}=c_{1} e^{2 t}+c_{2} e^{3 t} .
$$

A particular solution is in the form

$$
\begin{aligned}
y_{p}= & e^{t}\left(A_{0} \cos 2 t+B_{0} \sin 2 t\right) \\
& +e^{2 t}\left(\left(C_{1} t+C_{0}\right) \cos t+\left(D_{1} t+D_{0}\right) \sin t\right)
\end{aligned}
$$

where $A_{0}, B_{0}, C_{0}, C_{1}, D_{0}, D_{1}$ are constants to be determined.

Exercise 4.4 Question 2(c)

Write down a suitable form $y_{p}(t)$ of a particular solution of the following nonhomogeneous second order linear equations.

$$
y^{\prime \prime}+y=t(1+\sin t) .
$$

Solution: Solving the characteristic equation

$$
\begin{aligned}
r^{2}+1 & =0 \\
r & = \pm i .
\end{aligned}
$$

Thus the complementary function is

$$
y_{c}=c_{1} \cos t+c_{2} \sin t
$$

A particular solution is in the form

$$
\begin{aligned}
y_{p}= & \left(A_{1} t+A_{0}\right) \\
& +t\left(\left(B_{1} t+B_{0}\right) \cos t+\left(C_{1} t+C_{0}\right) \sin t\right)
\end{aligned}
$$

where $A_{0}, A_{1}, B_{0}, B_{1}, C_{0}, C_{1}$ are constants to be determined.

Exercise 4.5 Question 1(a)

Use the method of variation of parameters to solve the equations.

$$
y^{\prime \prime}-5 y^{\prime}+6 y=2 e^{t}
$$

Solution: Solving the characteristic equation

$$
\begin{aligned}
r^{2}-5 r+6 y & =0 \\
r & =2,3 .
\end{aligned}
$$

Let $y_{1}=e^{2 t}$ and $y_{2}=e^{3 t}$. Then complementary function is $y_{c}=C_{1} y_{1}+C_{2} y_{2}$. The Wronskian W is given by

$$
W=W\left(y_{1}, y_{2}\right)(t)=\left|\begin{array}{cc}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right|=y_{1} y_{2}^{\prime}-y_{1}^{\prime} y_{2}=\left(e^{2 t}\right)\left(3 e^{3 t}\right)-\left(2 e^{2 t}\right)\left(e^{3 t}\right)=e^{5 t}
$$

Now $g(t)=2 e^{t}$. Hence

$$
\left\{\begin{array} { l }
{ u _ { 1 } ^ { \prime } = - \frac { g y _ { 2 } } { W } = - \frac { (2 e ^ { t }) (e ^ { 3 t }) } { e ^ { 5 t } } = - 2 e ^ { - t } , } \\
{ u _ { 2 } ^ { \prime } = \frac { g y _ { 1 } } { W } = \frac { (2 e ^ { t }) (e ^ { 2 t }) } { e ^ { 5 t } } = 2 e ^ { - 2 t } }
\end{array} \Longrightarrow \left\{\begin{array}{l}
u_{1}=2 e^{-t}+c_{1} \\
u_{2}=-e^{-2 t}+c_{2}
\end{array}\right.\right.
$$

Hence the general solution is

$$
\begin{aligned}
y & =u_{1} y_{1}+u_{2} y_{2} \\
& =\left(2 e^{-t}+c_{1}\right) e^{2 t}+\left(-e^{-2 t}+c_{2}\right) e^{3 t} \\
& =c_{1} e^{2 t}+c_{2} e^{3 t}+e^{t} .
\end{aligned}
$$

Exercise 4.5 Question 1(b)

Use the method of variation of parameters to solve the equations.

$$
y^{\prime \prime}-y^{\prime}-2 y=2 e^{-t}
$$

Solution: Solving the characteristic equation

$$
\begin{aligned}
r^{2}-r-2 & =0 \\
r & =-1,2 .
\end{aligned}
$$

Let $y_{1}=e^{-t}$ and $y_{2}=e^{2 t}$. Then complementary function is $y_{c}=C_{1} y_{1}+C_{2} y_{2}$. The Wronskian W is given by

$$
W=W\left(y_{1}, y_{2}\right)(t)=\left|\begin{array}{cc}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right|=y_{1} y_{2}^{\prime}-y_{1}^{\prime} y_{2}=\left(e^{-t}\right)\left(2 e^{2 t}\right)-\left(-e^{-t}\right)\left(e^{2 t}\right)=3 e^{t} .
$$

Now $g(t)=2 e^{-t}$. Hence

$$
\left\{\begin{array} { l }
{ u _ { 1 } ^ { \prime } = - \frac { g y _ { 2 } } { W } = - \frac { (2 e ^ { - t }) (e ^ { 2 t }) } { 3 e ^ { t } } = - \frac { 2 } { 3 } , } \\
{ u _ { 2 } ^ { \prime } = \frac { g y _ { 1 } } { W } = \frac { (2 e ^ { - t }) (e ^ { - t }) } { 3 e ^ { t } } = \frac { 2 } { 3 } e ^ { - 3 t } }
\end{array} \Longrightarrow \left\{\begin{array}{l}
u_{1}=-\frac{2}{3} t+\left(c_{1}+\frac{2}{9}\right), \\
u_{2}=-\frac{2}{9} e^{-3 t}+c_{2}
\end{array}\right.\right.
$$

Hence the general solution is

$$
\begin{aligned}
y & =u_{1} y_{1}+u_{2} y_{2} \\
& =\left(-\frac{2}{3} t+\left(c_{1}+\frac{2}{9}\right)\right) e^{-t}+\left(-\frac{2}{9} e^{-3 t}+c_{2}\right) e^{2 t} \\
& =c_{1} e^{-t}+c_{2} e^{2 t}-\frac{2}{3} t e^{-t}
\end{aligned}
$$

Exercise 4.7 Question 1(c)

Write down a suitable form $y_{p}(t)$ of a particular solution of the following equations.

$$
y^{(4)}-2 y^{\prime \prime}+y=t e^{t}
$$

Solution: Solving the characteristic equation

$$
\begin{aligned}
r^{4}-2 r^{2}+1 & =0 \\
\left(r^{2}\right)^{2}-2\left(r^{2}\right)+1 & =0 \\
r^{2} & =1 \\
r & = \pm 1 .
\end{aligned}
$$

The characteristic equation has two double roots $r= \pm 1$. Thus the complementary function is

$$
y_{c}=c_{1} e^{-t}+c_{2} t e^{-t}+c_{3} e^{t}+c_{4} t e^{t} .
$$

A particular solution is in the form

$$
y_{p}=t^{2}\left(A_{1} t+A_{0}\right) e^{t}
$$

where A_{0}, A_{1} are constants to be determined.

Exercise 4.7 Question 1(e)

Write down a suitable form $y_{p}(t)$ of a particular solution of the following equations.

$$
y^{(4)}+2 y^{\prime \prime}+y=t \cos t
$$

Solution: Solving the characteristic equation

$$
\begin{aligned}
r^{4}+2 r^{2}+1 & =0 \\
\left(r^{2}\right)^{2}+2\left(r^{2}\right)+1 & =0 \\
r^{2} & =-1 \\
r & = \pm i .
\end{aligned}
$$

The characteristic equation has two double roots $r= \pm i$. Thus the complementary function is

$$
y_{c}=c_{1} \cos t+c_{2} t \cos t+c_{3} \sin t+c_{4} t \sin t .
$$

A particular solution is in the form

$$
y_{p}=t^{2}\left(\left(A_{1} t+A_{0}\right) \cos t+\left(B_{1} t+B_{0}\right) \sin t\right)
$$

where $A_{0}, A_{1}, B_{0}, B_{1}$ are constants to be determined.

