THE CHINESE UNIVERSITY OF HONG KONG
 Department of Mathematics
 MMAT5520

Differential Equations \& Linear Algebra
 Suggested Solution for Assignment 1 Prepared by CHEUNG Siu Wun

Exercise 1.1 Question 1(a)

$$
y^{\prime}+y=4 e^{3 x}
$$

Solution: An integrating factor is

$$
\exp \left(\int 1 d x\right)=e^{x}
$$

Multiplying both sides by e^{x}, we have

$$
\begin{aligned}
e^{x} y^{\prime}+e^{x} y & =4 e^{4 x} \\
\frac{d}{d x}\left(e^{x} y\right) & =4 e^{4 x} \\
e^{x} y & =\int 4 e^{4 x} d x \\
e^{x} y & =e^{4 x}+C \\
y & =e^{3 x}+C e^{-x} .
\end{aligned}
$$

Exercise 1.1 Question 2(c)

$$
\left(x^{2}+4\right) y^{\prime}+3 x y=3 x ; \quad y(0)=3
$$

Solution: Dividing both sides by $x^{2}+4$, the equation becomes

$$
y^{\prime}+\frac{3 x}{x^{2}+4} y=\frac{3 x}{x^{2}+4} .
$$

An integrating factor is

$$
\exp \left(\int \frac{3 x}{x^{2}+4} d x\right)=\exp \left(\frac{3}{2} \ln \left(x^{2}+4\right)\right)=\left(x^{2}+4\right)^{\frac{3}{2}} .
$$

Multiplying both sides by $\left(x^{2}+4\right)^{\frac{3}{2}}$, we have

$$
\begin{aligned}
\left(x^{2}+4\right)^{\frac{3}{2}} y^{\prime}+3 x\left(x^{2}+4\right)^{\frac{1}{2}} y & =3 x\left(x^{2}+4\right)^{\frac{1}{2}} \\
\frac{d}{d x}\left(\left(x^{2}+4\right)^{\frac{3}{2}} y\right) & =3 x\left(x^{2}+4\right)^{\frac{1}{2}} \\
\left(x^{2}+4\right)^{\frac{3}{2}} y & =\int 3 x\left(x^{2}+4\right)^{\frac{1}{2}} d x \\
\left(x^{2}+4\right)^{\frac{3}{2}} y & =\left(x^{2}+4\right)^{\frac{3}{2}}+C \\
y & =1+C\left(x^{2}+4\right)^{-\frac{3}{2}} .
\end{aligned}
$$

Since $y(0)=3$, we have

$$
3=1+\frac{1}{8} C \Longrightarrow C=16
$$

The solution of the initial value problem is

$$
y=1+16\left(x^{2}+4\right)^{-\frac{3}{2}} .
$$

Exercise 1.2 Question 2(a)

$$
x y^{\prime}-y=2 x^{2} y ; \quad y(1)=1
$$

Solution:

$$
\begin{aligned}
x y^{\prime}-y & =2 x^{2} y \\
x y^{\prime} & =\left(2 x^{2}+1\right) y \\
\frac{y^{\prime}}{y} & =2 x+\frac{1}{x} \\
\frac{d y}{y} & =\left(2 x+\frac{1}{x}\right) d x \\
\int \frac{d y}{y} & =\int\left(2 x+\frac{1}{x}\right) d x \\
\ln |y| & =x^{2}+\ln x+C^{\prime} \\
y & =C x e^{x^{2}}, \text { where } C= \pm e^{C^{\prime}} .
\end{aligned}
$$

Since $y(1)=1$, we have

$$
1=C e \Longrightarrow C=e^{-1} .
$$

The solution of the initial value problem is

$$
y=e^{-1} x e^{x^{2}}=x e^{x^{2}-1} .
$$

Exercise 1.3 Question 2(c)

Find the value of k so that the equation is exact and solve the equation.

$$
\left(2 x y^{2}+3 x^{2}\right) d x+\left(2 x^{k} y+4 y^{3}\right) d y=0
$$

Solution: We have

$$
\left\{\begin{array} { l }
{ M (x , y) = 2 x y ^ { 2 } + 3 x ^ { 2 } } \\
{ N (x , y) = 2 x ^ { k } y + 4 y ^ { 3 } }
\end{array} \Longrightarrow \left\{\begin{array}{l}
\frac{\partial M}{\partial y}=4 x y \\
\frac{\partial N}{\partial x}=2 k x^{k-1} y
\end{array}\right.\right.
$$

The equation is exact if and only if

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x} \Longleftrightarrow 4 x y=2 k x^{k-1} y \Longleftrightarrow k=2
$$

In this case, we set

$$
\begin{aligned}
F(x, y) & =\int M(x, y) d x \\
& =\int\left(2 x y^{2}+3 x^{2}\right) d x \\
& =x^{2} y^{2}+x^{3}+g(y) .
\end{aligned}
$$

Now, we want

$$
\begin{aligned}
\frac{\partial F}{\partial y} & =N(x, y) \\
2 x^{2} y+g^{\prime}(y) & =2 x^{2} y+4 y^{3} \\
g^{\prime}(y) & =4 y^{3} \\
g(y) & =y^{4}+C .
\end{aligned}
$$

The general solution of the differential equation is

$$
F(x, y)=C \Longleftrightarrow x^{2} y^{2}+x^{3}+y^{4}=C .
$$

Exercise 1.4 Question 1(e)

$$
x^{2} y^{\prime}=x y+y^{2}
$$

Solution: Dividing both sides by x^{2}, we have

$$
y^{\prime}=\frac{y}{x}+\left(\frac{y}{x}\right)^{2}
$$

Let $u=\frac{y}{x}$. We have

$$
\begin{aligned}
u+x \frac{d u}{d x} & =\frac{d y}{d x}=u+u^{2} \\
x \frac{d u}{d x} & =u^{2} \\
\frac{d u}{u^{2}} & =\frac{d x}{x} \\
\int \frac{d u}{u^{2}} & =\int \frac{d x}{x} \\
-u^{-1} & =\ln |x|+C \\
-\frac{x}{y} & =\ln |x|+C \\
y & =-\frac{x}{\ln |x|+C} \text { or } y=0 .
\end{aligned}
$$

Exercise 1.5 Question 1(c)

$$
x y^{\prime}=y\left(x^{2} y-1\right)
$$

Solution: Dividing both sides by x, we have

$$
\begin{aligned}
y^{\prime} & =x y^{2}-x^{-1} y \\
y+x^{-1} y & =x y^{2} .
\end{aligned}
$$

Let $u=y^{1-2}=y^{-1}$. We have

$$
\begin{aligned}
\frac{d u}{d x} & =(1-2) y^{-2} \frac{d y}{d x} \\
\frac{d u}{d x} & =-y^{-2}\left(-x^{-1} y+x y^{2}\right) \\
\frac{d u}{d x} & =x^{-1} y^{-1}-x \\
\frac{d u}{d x}-x^{-1} u & =-x
\end{aligned}
$$

An integrating factor is

$$
\exp \left(\int-x^{-1} d x\right)=\exp (-\ln x)=x^{-1}
$$

Multiplying both sides by x^{-1}, we have

$$
\begin{aligned}
x^{-1} \frac{d u}{d x}-x^{-2} u & =-1 \\
\frac{d}{d x}\left(x^{-1} u\right) & =-1 \\
x^{-1} u & =\int-1 d x \\
x^{-1} u & =-x+C \\
u & =-x^{2}+C x \\
y^{-1} & =-x^{2}+C x \\
y & =\left(-x^{2}+C x\right)^{-1} \text { or } y=0 .
\end{aligned}
$$

Exercise 1.6 Question 1(b)

Solve the following differential equation by using the given substitution.

$$
y^{\prime}=\sqrt{x+y} ; \quad u=x+y
$$

Solution: Let $u=x+y$. Then we have

$$
\frac{d u}{d x}=1+\frac{d y}{d x} .
$$

Substituting it into the original differential equation, we have

$$
\begin{aligned}
\frac{d u}{d x}-1 & =\sqrt{u} \\
\frac{d u}{d x} & =1+\sqrt{u} \\
\frac{d u}{1+\sqrt{u}} & =d x \\
\int \frac{d u}{1+\sqrt{u}} & =\int d x \\
\int \frac{d u}{1+\sqrt{u}} & =x .
\end{aligned}
$$

Making another substitution $s=\sqrt{u}$, we have

$$
d s=\frac{d u}{2 \sqrt{u}} \Longrightarrow d u=2 s d s
$$

and therefore

$$
\begin{aligned}
\int \frac{d u}{1+\sqrt{u}} & =\int \frac{2 s d s}{1+s} \\
& =2 \int\left(1-\frac{1}{1+s}\right) d s \\
& =2(s-\ln |1+s|)+C \\
& =2(\sqrt{u}-\ln (1+\sqrt{u}))+C
\end{aligned}
$$

Hence, we have

$$
\begin{aligned}
2(\sqrt{u}-\ln (1+\sqrt{u})) & =x+C \\
2(\sqrt{x+y}-\ln (1+\sqrt{x+y})) & =x+C
\end{aligned}
$$

Exercise 1.7 Question 1(a)

$$
y y^{\prime \prime}+\left(y^{\prime}\right)^{2}=0
$$

Solution: Let $p=y^{\prime}$. Then we have

$$
y^{\prime \prime}=p^{\prime}=\frac{d p}{d x}=\frac{d p}{d y} \frac{d y}{d x}=p \frac{d p}{d y} .
$$

Substituting it into the original differential equation, we have

$$
\begin{aligned}
y\left(p \frac{d p}{d y}\right)+p^{2} & =0 \\
y p \frac{d p}{d y} & =-p^{2} \\
\frac{d p}{p} & =-\frac{d y}{y} \\
\int \frac{d p}{p} & =-\int \frac{d y}{y} \\
\ln |p| & =-\ln y+C_{0} \\
2 C_{1} p & =y^{-1}, \text { where } C_{1}= \pm \frac{1}{2} e^{-C_{0}} \\
2 C_{1} \frac{d y}{d x} & =y^{-1} \\
2 C_{1} y d y & =d x \\
\int 2 C_{1} y d y & =\int d x \\
C_{1} y^{2}+C_{2} & =x
\end{aligned}
$$

Exercise 1.7 Question 2(b)

$$
y^{\prime}=\frac{x^{2}+2 y}{x}
$$

Solution: Rewriting the equation, we have

$$
\begin{aligned}
y^{\prime} & =\frac{x^{2}+2 y}{x} \\
y^{\prime}-\frac{2}{x} y & =x .
\end{aligned}
$$

This equation is a first order linear ODE. An integrating factor is

$$
\exp \left(\int-\frac{2}{x} d x\right)=\exp (-2 \ln x)=x^{-2}
$$

Multiplying both sides with x^{-2}, we have

$$
\begin{aligned}
x^{-2} y^{\prime}-2 x^{-3} y & =x^{-1} \\
\frac{d}{d x}\left(x^{-2} y\right) & =x^{-1} \\
x^{-2} y & =\int x^{-1} d x \\
x^{-2} y & =\ln |x|+C \\
y & =x^{2}(\ln |x|+C) .
\end{aligned}
$$

Exercise 1.7 Question 2(d)

$$
x y^{\prime}+2 y=6 x^{2} \sqrt{y}
$$

Solution: Dividing both sides by x, we have

$$
y^{\prime}+\frac{2}{x} y=6 x \sqrt{y}
$$

This equation is a Bernoulli's equation. Let $u=y^{1-\frac{1}{2}}=y^{\frac{1}{2}}$. We have

$$
\begin{aligned}
\frac{d u}{d x} & =\left(1-\frac{1}{2}\right) y^{-\frac{1}{2}} \frac{d y}{d x} \\
\frac{d u}{d x} & =\frac{1}{2} y^{-\frac{1}{2}}\left(-\frac{2}{x} y+6 x \sqrt{y}\right) \\
\frac{d u}{d x} & =-\frac{1}{x} y^{\frac{1}{2}}+3 x \\
\frac{d u}{d x}+\frac{1}{x} u & =3 x
\end{aligned}
$$

An integrating factor is

$$
\exp \left(\int \frac{1}{x} d x\right)=\exp (\ln x)=x
$$

Multiplying both sides with x, we have

$$
\begin{aligned}
x \frac{d u}{d x}+u & =3 x^{2} \\
\frac{d}{d x}(x u) & =3 x^{2} \\
x u & =\int 3 x^{2} d x \\
x u & =x^{3}+C \\
u & =x^{2}+C x^{-1} \\
y^{\frac{1}{2}} & =x^{2}+C x^{-1} \\
y & =\left(x^{2}+C x^{-1}\right)^{2} \text { or } y=0 .
\end{aligned}
$$

