MMAT 5011 Analysis II
 2016-17 Term 2

 Midterm Examination

 Midterm Examination
 March 14, 2017

Full mark: 80

1. (15 marks) Explain why the following statements are false. Justify each answer briefly by a counter-example.
(a) The subset

$$
\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in M_{2 \times 2}(\mathbb{R}): a, b, c, d \geq 0\right\}
$$

is a subspace of the real vector space $M_{2 \times 2}(\mathbb{R})$ of all real 2×2 matrices.
(b) The function

$$
\|\mathbf{x}\|_{1 / 2}=\left(\sqrt{\left|x_{1}\right|}+\sqrt{\left|x_{2}\right|}\right)^{2} \text { for } \mathbf{x}=\left(x_{1}, x_{2}\right)
$$

defines a norm on the vector space \mathbb{R}^{2}.
(c) Recall that for $1 \leq p<\infty$, the real l^{p}-space is defined by

$$
l^{p}=\left\{\mathbf{x}=\left(x_{1}, x_{2}, \ldots\right): x_{i} \in \mathbb{R} \text { for each } i, \sum_{i=1}^{\infty}\left|x_{i}\right|^{p}<\infty\right\} .
$$

The space l^{2} is a subset of l^{1}.
2. (10 marks) Let X be a normed space and Y be a Banach space. Suppose that $\left(T_{n}\right)$ is a Cauchy sequence in $B(X, Y)$. Show that for any $x \in X,\left(T_{n}(x)\right)$ is a convergent sequence in Y.
3. (10 marks) Show that the subset $\mathbb{N}=\{1,2,3, \ldots\}$ of \mathbb{R} is measure zero.
4. (10 marks) Let X, Y be vector spaces and $T: X \rightarrow Y$ is a linear operator. Recall that the null space of T is defined to be the subspace

$$
N(T)=\{x \in X: T(x)=0\}
$$

of X. Show that
(a) If $N(T)=\{0\}$, then T is injective.
(b) If $\|T(x)\|=\|x\|$ for any $x \in X$, then T is injective.
5. (15 marks) Find the following norms:
(a) $\|f\|_{2}$, where $f \in L^{2}([0,1])$ is defined by $f(x)=1+x$.
(b) $\|\mathbf{x}\|_{\infty}$, where $\mathbf{x}=\left(\frac{1}{1+2}, \frac{1}{1+2^{2}}, \ldots\right)$ is the sequence defined by $x_{n}=\frac{1}{1+2^{n}}$.
(c) $\|T\|$, where T is the linear functional on $l^{3 / 2}$ defined by

$$
T(\mathbf{x})=\sum_{n=1}^{\infty} \frac{x_{n}}{2^{n}}
$$

$$
\text { for } \mathbf{x}=\left(x_{1}, x_{2}, \ldots\right) \in l^{3 / 2}
$$

6. (20 marks) Let $P(\mathbb{R})$ be the normed space of real polynomials with norm given by

$$
\|p\|=\int_{0}^{1}|p(x)| d x
$$

(a) Compute $\left\|p_{n}\right\|$, where $p_{n}(x)=x^{n}$.
(b) Show that differential operator $T: P(\mathbb{R}) \rightarrow P(\mathbb{R})$ defined by $T(p)=p^{\prime}$ is unbounded.
(c) Let $P_{n}(\mathbb{R}) \subset P(\mathbb{R})$ be the subspace consisting of polynomials of degree at most n. Is the linear operator $T_{n}=\left.T\right|_{P_{n}(\mathbb{R})}$, the restriction of T on $P_{n}(\mathbb{R})$, bounded? Explain briefly.
(d) Consider the bounded linear functional $U: P(\mathbb{R}) \rightarrow \mathbb{R}$ defined by

$$
U(p)=\int_{0}^{1}\left(3 x^{3}-2\right) p(x) d x
$$

Write down the norm of U. No justification is needed.
(e) Let $S: P(\mathbb{R}) \rightarrow P(\mathbb{R})$ be the linear operator defined by

$$
S(p)(x)=\int_{0}^{x} p(t) d t
$$

Is S bounded? Explain briefly.

