MMAT 5011 Analysis II

 2016-17 Term 2

 2016-17 Term 2

 Assignment 6 (Optional)

 Assignment 6 (Optional)}

This assignment is optional. You do not have to turn in it. However, you are encouraged to try all the problems.

1. Consider $P_{1}(\mathbb{R})$ as a subspace of $L^{2}[0,1]$. Let $f: P_{1}(\mathbb{R}) \rightarrow \mathbb{R}$ be defined by $f(p)=p^{\prime}(0)$. Find a polynomial $q \in P_{1}(\mathbb{R})$ such that $f(p)=\langle p, q\rangle$ for all $p \in P_{1}(\mathbb{R})$.
2. Prove that $(\alpha T)^{*}=\bar{\alpha} T^{*}$ for a bounded linear operator $T: H_{1} \rightarrow H_{2}$ between Hilbert spaces and a scalar α.
3. Let $T: H_{1} \rightarrow H_{2}$ be a bounded operator. Show that $N(T)=\left[T^{*}\left(H_{2}\right)\right]^{\perp}$. Here $N(T)$ and $T^{*}\left(H_{2}\right)$ is the null space of T and the range of T^{*} respectively.
4. Suppose that $T: H \rightarrow H$ is a bounded linear opeartor. Let

$$
T_{1}=\frac{1}{2}\left(T+T^{*}\right) \text { and } T_{2}=\frac{1}{2 i}\left(T-T^{*}\right)
$$

(a) Show that T_{1} and T_{2} are self adjoint.
(b) Show that $T=T_{1}+i T_{2}$.
(c) Show that if $S_{1}, S_{2}: H \rightarrow H$ are self-adjoint operators such that $T=S_{1}+i S_{2}$, then $S_{1}=T_{1}$ and $S_{2}=T_{2}$.
5. Let H be a finite dimensional complex inner product space. Suppose a linear operator $T: H \rightarrow H$ satisfies $T^{*}=-T$. Show that T has an orthonormal eigenbasis (i.e. an orthonormal basis consisting of eigenvectors) and all its eigenvalues are purely imaginary.
6. Suppose $T_{n}, T: H_{1} \rightarrow H_{2}$ are bounded. Show that if $T_{n} \rightarrow T$, then $T_{n}^{*} \rightarrow T^{*}$.
7. Show that $I+T^{*} T: H \rightarrow H$ is injective for a bounded linear operator $T: H \rightarrow H$.
8. Suppose that $T: H \rightarrow H$ is a normal operator and α is a scalar.
(a) Show that $\|T(x)\|=\left\|T^{*}(x)\right\|$.
(b) Show that $T-\alpha I: H \rightarrow H$ is a normal operator. Here $I: H \rightarrow H$ is the identity operator $I(x)=x$.
(c) Show that $T(x)=\alpha x$ if and only if $T^{*}(x)=\bar{\alpha} x$.
(d) Show that if x, y are eigenvectors of T corresponding to different eigenvalues, then x and y are orthogonal.

