MMAT 5011 Analysis II 2016-17 Term 2 Assignment 4 Due date: Mar 28, 2017

You do not have to turn in the solution of optional problems. However, you are encouraged to try all the problems.

- 1. State and prove the Parallogram equality for inner product space.
- 2. Let X be a real inner product space. Prove that for any $x, y \in X$,

$$\langle x, y \rangle = \frac{1}{4} \left(\|x + y\|^2 - \|x - y\|^2 \right).$$

It is known as the Polarization identity.

- 3. Explain why the following functions are not inner products with counter-examples:
 - (a) $\langle x, y \rangle = x_1^2 y_1^2 + x_2^2 y_2^2$ on \mathbb{R}^2 ;
 - (b) $\langle x, y \rangle = x_1 y_1 + 2x_1 y_2 + 2x_2 y_1 + x_2 y_2$ on \mathbb{R}^2 ;
 - (c) $\langle x, y \rangle = x_1 y_1 + i x_1 y_2 + i x_2 y_1 + x_2 y_2$ on \mathbb{C}^2 .

Here, $x = (x_1, x_2)$ and $y = (y_1, y_2)$.

- 4. Show that the norm in l^1 is not induced from an inner product.
- 5. Let $T : X \to X$ be a linear operator on a complex inner product space X. Suppose $\langle T(x), x \rangle = 0$ for any $x \in X$. Show that T is the zero operator. (*Hint: Consider* $y + \alpha z$ for arbitrary vectors $y, z \in X$ and different $\alpha \in \mathbb{C}$.)
- 6. Consider the direct sum decomposition of $M_{n \times n}(\mathbb{R}) = Sym_{n \times n} \oplus Skew_{n \times n}$, where

$$Sym_{n\times n} = \{A \in M_{n\times n}(\mathbb{R}) : A = A^t\},\$$

$$Skew_{n \times n} = \{A \in M_{n \times n}(\mathbb{R}) : A = -A^t\}.$$

(a) Express $\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$ as A + B with $A \in Sym_{3\times 3}$ and $B \in Skew_{3\times 3}$.

- (b) How about a general $M \in M_{n \times n}(\mathbb{R})$? Express the corresponding A and B in terms of M and M^t .
- (c) Verify that dim $M_{n \times n}(\mathbb{R}) = \dim Sym_{n \times n} + \dim Skew_{n \times n}$.
- 7. Show that in a complex inner product space, vectors $x \perp y$ if and only if $||x + \alpha y|| \ge ||x||$ for all scalar $\alpha \in \mathbb{C}$.

- 8. Determine whether each of the following sets is convex.
 - (a) The closed unit ball $\overline{B} = \{x \in X : ||x|| \le 1\}$ in an inner produce space X.
 - (b) The subset $\{(x, y) : xy < 0\} \in \mathbb{R}^2$.
- 9. Let X be an inner product space and $A \subset X$ be a subspace.
 - (a) Show that $A \subset (A^{\perp})^{\perp}$.
 - (b) Show that A^{\perp} is closed in X.
 - (c) Consider the subset

$$Y = \{(x_1, x_2, \ldots) : \exists N > 0 \text{ such that } x_i = 0 \ \forall i \ge N\}$$

of l^2 . What is Y^{\perp} and $(Y^{\perp})^{\perp}$?

10. (Optional) Show, using the standard inner product on \mathbb{R}^2 , that the diagonals of a rhombus are perpendicular. (*Hint: Suppose* $x, y \in \mathbb{R}^2$ are adjacent sides of a rhombus. What are the diagonals in terms of x and y?)