MMAT 5011 Analysis II

 2016-17 Term 2

 2016-17 Term 2

 Assignment 3

 Assignment 3
 Due date: Mar 7, 2017

Assume $\mathbb{F}=\mathbb{R}$ in all the following problems.
You do not have to turn in the solution of optional problems. However, you are encouraged to try all the problems.

1. Let X, Y be vector spaces and $T: X \rightarrow Y$ is a linear operator. Recall that the null space of T is defined to be the subspace

$$
N(T)=\{x \in X: T(x)=0\}
$$

of X. Show that
(a) If $N(T)=\{0\}$, then T is injective.
(b) If $\|T(x)\|=\|x\|$ for any $x \in X$, then T is injective.
2. Let X be the normed space of real continuous functions on $[0,1]$ with norm given by

$$
\|f\|_{1}=\int_{0}^{1}|f(t)| d t
$$

Let $T: X \rightarrow \mathbb{R}$ be the linear functional defined by

$$
T(f)=\int_{0}^{1} f(t)(1+2 t) d t
$$

(a) Show that $\|T\| \leq 3$;
(b) Show that $\|T\|=3$. (Hint: Consider monomials t^{n}.)
(c) (Optional) Let $g(t)$ be a real continuous function on $[0,1]$. Express the norm $\|S\|$ of the bounded linear functional $S: X \rightarrow \mathbb{R}$ defined by

$$
S(f)=\int_{0}^{1} f(t) g(t) d t
$$

in terms of g.
3. Let X be a normed space and Y be a Banach space. Suppose that $\left(T_{n}\right)$ is a Cauchy sequence in $B(X, Y)$. Show that for any $x \in X,\left(T_{n}(x)\right)$ is a convergent sequence in Y.
4. Consider the normed space \mathbb{R}^{2} with standard Euclidean norm defined by $\|x\|=\sqrt{x_{1}^{2}+x_{2}^{2}}$. Let $S:\left(\mathbb{R}^{2}\right)^{\prime} \rightarrow \mathbb{R}^{2}$ be defined by

$$
S(f)=\left(f\left(e_{1}\right), f\left(e_{2}\right)\right) .
$$

Show that S is norm-preserving, i.e. $\|S(f)\|=\|f\|$ for any $f \in\left(\mathbb{R}^{2}\right)^{\prime}$.
5. Let V be a n-dimensional vector space and $f, g: V \rightarrow \mathbb{R}$ be non-zero linear functionals on V. Suppose that $N(f)=N(g)=Z$ is a $(n-1)$-dimensional subspace of V. Show that there exists a constant $c \in \mathbb{R}$ such that $f(x)=c g(x)$ for any $x \in V$. (Hint: Let $y \in V \backslash Z$. Note that every vector of V can be expressed uniquely as $z+\alpha y$ for some $z \in Z$ and $\alpha \in \mathbb{R}$.)
6. Let X be a normed space and $x, y \in X$. Suppose that $f(x)=f(y)$ for any bounded linear functional f on X. Show that $x=y$.
7. (Optional) Consider the following subspaces of the normed space l^{∞} :

$$
\begin{aligned}
Z & =\left\{\left(x_{1}, x_{2}, \ldots\right): \exists N>0 \text { such that } x_{i}=0 \forall i \geq N\right\} \\
c & =\left\{\left(x_{1}, x_{2}, \ldots\right): \lim _{i \rightarrow \infty} x_{i} \text { exists. }\right\}
\end{aligned}
$$

Let $T: l^{1} \rightarrow\left(l^{\infty}\right)^{\prime}$ be defined by

$$
T(y)(x)=\sum_{i=1}^{\infty} x_{i} y_{i}
$$

You may assume that T is well-defined and linear without proof.
(a) Consider the linear functional $f: c \rightarrow \mathbb{R}$ defined by $f(x)=\lim _{i \rightarrow \infty} x_{i}$. Show that f is bounded with $\|f\|=1$.
(b) Suppose $y \in l^{1}$ and $T(y)(x)=0$ for every $x \in Z$. Show that $y=0$ and hence $T(y)$ is the zero linear functional on l^{∞}.
(c) Show that $\|T(y)\|=\|y\|$.
(d) Use the Hahn-Banach theorem and parts (a) and (b) to show that T is injective but not surjective.
8. (Optional) Read (or prove yourself!) section 2.10-7 on the dual space of l^{p} for $1<p<\infty$.

