MMAT 5011 Analysis II

2016-17 Term 2

Assignment 2

Due date: Feb 21, 2017

Assume $\mathbb{F}=\mathbb{R}$ in all the following problems.
You do not have to turn in the solution of optional problems. However, you are encouraged to try all the problems.

1. (a) Let A be a measure zero subset of \mathbb{R} and $B \subset A$. Show that B is measure zero.
(b) Let A_{i} be a measure zero subset of \mathbb{R} for each $i \in \mathbb{N}$. Show that the countable union $\bigcup_{i=1}^{\infty} A_{i}$ is measure zero.
2. Suppose $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ is a basis of a real normed space X. Show that

$$
\left\{c_{1} x_{1}+c_{2} x_{2}+\ldots+c_{n} x_{n}: c_{i}>0 \text { for } 1 \leq i \leq n\right\}
$$

is an open subset of X. (Hint: Use lemma 2.4-1.)
3. A series $\sum_{i=1}^{\infty} x_{i}$ in a normed space is said to be

- convergent if $s_{k}=\sum_{i=1}^{k} x_{i}$ is a convergent sequence.
- absolute convergent if $\sigma_{k}=\sum_{i=1}^{k}\left\|x_{i}\right\|$ is a convergent sequence.
(a) Show that an absolute convergent series in a Banach space X is convergent.
(b) (Optional) Give a counter-example to show that the implication in (a) is no longer true if X is an incomplete normed space.

4. Consider the following subspaces of the normed space l^{∞} :

$$
\begin{aligned}
Y & =\left\{\left(x_{1}, x_{2}, \ldots\right): \exists N>0 \text { such that } x_{i}=0 \forall i \geq N\right\} \\
c_{0} & =\left\{\left(x_{1}, x_{2}, \ldots\right): \lim _{i \rightarrow \infty} x_{i}=0\right\}
\end{aligned}
$$

(a) Is Y complete? (Hint: Do $x_{n} \in Y$ and $x_{n} \rightarrow x \in l^{\infty}$ imply that $x \in Y$?)
(b) (Optional) Is c_{0} complete?
5. Let $T: X \rightarrow Y$ be a linear operator between normed spaces X and Y. Show that T is bounded if and only if $T(A)=\{T(x): x \in A\}$ is bounded for any bounded subset $A \subset X$.
6. Give an example of a linear operator $T: X \rightarrow X$ on a normed space X with $\|T\|=1$ and $\|T(x)\|<\|x\|$ for all non-zero $x \in X$.
7. Let X be the normed space of polynomials with norm given by

$$
\|p\|=\int_{0}^{1}|p(x)| d x
$$

Show that differential operator $T: X \rightarrow X$ defined by $T(p)=p^{\prime}$ is unbounded.
8. (Optional) Show that the interval $[0,1]$ is not measure zero.
9. (Optional) Consider the vector space $C[-1,1]$ of real continuous functions on the interval $[-1,1]$. Let $f_{n} \in C[-1,1]$ be defined by

$$
f_{n}(n)= \begin{cases}0 & \text { if }-1 \leq x<0 \\ n x & \text { if } 0 \leq x \leq \frac{1}{n} \\ 1 & \text { if } \frac{1}{n}<x \leq 1\end{cases}
$$

Determine whether the sequence $\left(f_{n}\right)$ is Cauchy and/or convergent under the following norms on $C[-1,1]$.
(a) $\|f\|_{\infty}=\sup _{-1 \leq x \leq 1}|f(x)|$;
(b) $\|f\|_{1}=\int_{-1}^{1}|f(x)| d x$.

