MMAT 5011 Analysis II

2016-17 Term 2

Assignment 1

Due date: Feb 7, 2017

1. Let $V=M_{3 \times 3}(\mathbb{R})$ be the vector space of all 3×3 real matrices. Verify from definition if each of following subsets is a vector subspace of V or not. If it is a vector subspace, write down a basis for it.
(a) $\left\{A \in M_{3 \times 3}(\mathbb{R}): \operatorname{det} A=0\right\}$;
(b) $\left\{\left(a_{i j}\right) \in M_{3 \times 3}(\mathbb{R}): a_{i j} \geq 0, i, j=1,2,3\right\}$;
(c) $\left\{\left(a_{i j}\right) \in M_{3 \times 3}(\mathbb{R}): a_{i j}=-a_{j i}, i, j=1,2,3\right\}$, the subset of skew- symmetric matrices.

2 . Let $n \geq 2$. Verify that the function

$$
\|\mathbf{z}\|_{2}=\sqrt{\sum_{i=1}^{n}\left|z_{i}\right|^{2}} \text { for } \mathbf{z}=\left(z_{1}, z_{2}, \ldots, z_{n}\right)
$$

defines a norm on \mathbb{C}^{n}. You can use any inequalities and their finite versions discussed in class. How about

$$
\|\mathbf{z}\|_{1 / 2}=\left(\sum_{i=1}^{n} \sqrt{\left|z_{i}\right|}\right)^{2} \text { for } \mathbf{z}=\left(z_{1}, z_{2}, \ldots, z_{n}\right) ?
$$

3. Let $1 \leq p<q$ and consider the real version of l^{p}-space

$$
l^{p}=\left\{\mathbf{x}=\left(x_{1}, x_{2}, \ldots\right): \sum_{i=1}^{\infty}\left|x_{i}\right|^{p}<\infty\right\} .
$$

(a) Show that $l^{p} \subset l^{q}$. Two useful fact for real series you may use are

- If $\sum_{i=1}^{\infty}\left|a_{i}\right|<\infty$, then $\lim _{i \rightarrow \infty} a_{i}=0$.
- If $0 \leq a_{i} \leq b_{i}$ for all large enough i and $\sum_{i=1}^{\infty} b_{i}<\infty$, then $\sum_{i=1}^{\infty} a_{i}<\infty$.
(b) Show that the inclusion $l^{p} \subset l^{q}$ is proper. In other words, find an element $\mathbf{x}=$ $\left(x_{1}, x_{2}, \ldots\right)$ which lies in l^{q} but not in l^{p}.

4. Let $n>0$ and $a_{1}, a_{2}, \ldots, a_{n}, b_{1}, b_{2}, \ldots b_{n}$ be positive real numbers. Show that

$$
\frac{a_{1}^{2}}{b_{1}}+\frac{a_{2}^{2}}{b_{2}}+\ldots+\frac{a_{n}^{2}}{b_{n}} \geq \frac{\left(a_{1}+a_{2}+\ldots+a_{n}\right)^{2}}{b_{1}+b_{2}+\ldots+b_{n}} .
$$

Hence, show that

$$
\frac{x^{2}}{3^{3}}+\frac{y^{2}}{4^{3}}+\frac{z^{2}}{5^{3}} \geq \frac{(x+y+z)^{2}}{6^{3}}
$$

for $x, y, z>0$.
5. Let $\mathbf{x}, \mathbf{y} \in l^{\infty}$. Show that $\mathbf{x}+\mathbf{y} \in l^{\infty}$ with

$$
\|\mathbf{x}+\mathbf{y}\|_{\infty} \leq\|\mathbf{x}\|_{\infty}+\|\mathbf{y}\|_{\infty} .
$$

6. Show that for any $\mathbf{x}, \mathbf{y} \in l^{p}$,

$$
\left|\|\mathbf{x}\|_{p}-\|\mathbf{y}\|_{p}\right| \leq\|\mathbf{x}-\mathbf{y}\|_{p} .
$$

7. Since the natural logarithm has second derivatives $(\log x)^{\prime \prime}=-\frac{1}{x^{2}}<0$ on its domain $(0, \infty)$, it is a concave function. Hence, for any $0<\alpha<1$ and $x, y>0$,

$$
\log ((1-\alpha) x+\alpha y) \geq(1-\alpha) \log x+\alpha \log y .
$$

By using the substitution $x=a^{p}, y=b^{q}$ and the fact that the exponential funtion e^{x} is increasing, prove the Young's inequality, which states that for any $a, b>0$ and $p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$,

$$
a b \leq \frac{1}{p} a^{p}+\frac{1}{q} b^{q} .
$$

