MMAT 5011 Analysis II
 2016-17 Term 2
 Assignment 6
 Suggested Solution

1. Let $q(x)=a+b x \in P_{1}(\mathbb{R})$, for any $p(x)=c+d x \in P_{1}(\mathbb{R})$, we have

$$
f(p)=p^{\prime}(0)=d=\langle p, q\rangle=\int_{0}^{1} p(x) q(x) d x=\frac{b d}{3}+\frac{a d+b c}{2}+a c
$$

Thus

$$
\left(a+\frac{1}{2} b\right) c+\left(\frac{1}{3} b+\frac{1}{2} a-1\right) d=0
$$

holds for all $c, d \in \mathbb{R}$. We have $a+\frac{1}{2} b=0, \frac{1}{3} b+\frac{1}{2} a-1=0$, which give $a=-6, b=12$. Hence $q(x)=-6+12 x$.
2. For $x \in H_{1}, y \in H_{2}$,

$$
\left\langle x,(\alpha T)^{*} y\right\rangle=\langle(\alpha T) x, y\rangle=\langle T x, \bar{\alpha} y\rangle=\left\langle x, T^{*}(\bar{\alpha} y)\right\rangle=\left\langle x,\left(\bar{\alpha} T^{*}\right) y\right\rangle .
$$

Since x, y are arbitrary, we conclude $(\alpha T)^{*}=\bar{\alpha} T^{*}$.
3. i) Let $x \in N(T)$. Then $T x=0,\left\langle x, T^{*} y\right\rangle=\langle T x, y\rangle=0$ for any $y \in H_{2}$. Consequently, $x \in\left[T^{*}\left(H_{2}\right)\right]^{\perp}, N(T) \subset\left[T^{*}\left(H_{2}\right)\right]^{\perp}$.
ii) Let $x \in\left[T^{*}\left(H_{2}\right)\right]^{\perp} .\langle T x, y\rangle=\left\langle x, T^{*} y\right\rangle=0$ for all $y \in H_{2}$, thus $T x=0, x \in N(T)$. This gives the reverse inclusion of i).
4. (a)

$$
\begin{gathered}
T_{1}^{*}=\left[\frac{1}{2}\left(T+T^{*}\right)\right]^{*}=\frac{1}{2}\left(T+T^{*}\right)^{*}=\frac{1}{2}\left(T^{*}+\left(T^{*}\right)^{*}\right)=\frac{1}{2}\left(T^{*}+T\right)=T_{1} . \\
T_{2}^{*}=\left[\frac{1}{2 i}\left(T-T^{*}\right)\right]^{*}=\overline{\left(\frac{1}{2 i}\right)}\left(T-T^{*}\right)^{*}=\frac{-1}{2 i}\left(T^{*}-\left(T^{*}\right)^{*}\right)=\frac{-1}{2 i}\left(T^{*}-T\right)=T_{2} .
\end{gathered}
$$

Thus T_{1} and T_{2} are self-adjoint.
(b) $T_{1}+i T_{2}=\frac{1}{2}\left(T+T^{*}\right)+i \frac{1}{2 i}\left(T-T^{*}\right)=T$.
(c)

$$
T=S_{1}+i S_{2} \quad \text { and } \quad T^{*}=\left(S_{1}+i S_{2}\right)^{*}=S_{1}^{*}-i S_{2}^{*}=S_{1}-i S_{2}
$$

Hence $S_{1}=\frac{1}{2}\left(T+T^{*}\right)=T_{1}, S_{2}=\frac{1}{2 i}\left(T-T^{*}\right)=T_{2}$.
5 . Let λ be a eigenvalue of T and x be the corresponding eigenvector. We have

$$
\lambda\langle x, x\rangle=\langle\lambda x, x\rangle=\langle T x, x\rangle=\left\langle x, T^{*} x\right\rangle=\langle x,-T x\rangle=\langle x,-\lambda x\rangle=-\bar{\lambda}\langle x, x\rangle
$$

Since x is an eigenvector, $\langle x, x\rangle \neq 0$. Thus $\lambda+\bar{\lambda}=0$ and λ is purely imaginary.
To show T has an orthonormal eigenbasis, consider the operator $S=i T$. Then $S^{*}=$ $-i T^{*}=i T=S$. Hence S is self-adjoint. By spectral theorem, S has an orthonormal eigenbasis $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ and the corresponding eigenvalues $\beta_{1}, \ldots, \beta_{n}$ are real. Note
that $T\left(x_{k}\right)=-i S\left(x_{k}\right)=-i \beta_{k} x_{k}$, which implies each x_{k} is also an eigenvector of T. Hence, $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ is also an eigenbasis for T.
Alternatively, one can prove the existence of orthonormal eigenbasis by induction on the dimension of H without using spectral theorem as below.
For $n=1$, it is trivial. Assume it is true for $n=k$.
For $\operatorname{dim} H=k+1$, note that $\|T\|=\sup _{\|x\|=1}|\langle T x, x\rangle|$, and H is finite dimensional, we can find $x \in H,\|x\|=1$ such that

$$
|\langle T x, x\rangle|=\|T\| .
$$

By Cauchy-Schwarz inequality, we also have

$$
|\langle T x, x\rangle| \leq\|T(x)\|\|x\| \leq\|T\| .
$$

The equality holds when $T(x)$ and x are linearly dependent, i.e., there exists λ such that $T(x)=\lambda x$. This shows that x is an eigenvector and λ the corresponding eigenvalue. Denote by $x_{k+1}=x, \lambda_{k+1}=\lambda$. Consider $H_{0}=\operatorname{span}\left\{x_{k+1}\right\}^{\perp}$. Then $\operatorname{dim} H_{0}=\operatorname{dim} H-1=$ k. Also, if $x \in H_{0}$, then

$$
\left\langle T x, x_{k+1}\right\rangle=\left\langle x,-T x_{k+1}\right\rangle=-\left\langle x, \lambda_{k+1} x_{k+1}\right\rangle=-\overline{\lambda_{k+1}}\left\langle x, x_{k+1}\right\rangle=0
$$

Thus $T x \in H_{0},\left.T\right|_{H_{0}}: H_{0} \rightarrow H_{0}$ is an operator on $H_{0} . T^{*}=-T$ gives $\left.T\right|_{H_{0}} ^{*}=-\left.T\right|_{H_{0}}$. By our induction assumption, there exists an orthonormal basis $\left\{x_{1}, x_{2}, \cdots, x_{k}\right\}$ of H_{0} such that $T\left(x_{i}\right)=\lambda_{i} x_{i}$ for $i=1,2, \cdots, k$. Then $\left\{x_{1}, x_{2}, \cdots, x_{k+1}\right\}$ is a basis we want.
6. Since T_{n}, T are bounded, $\left\|T_{n}^{*}-T^{*}\right\|=\left\|\left(T_{n}-T\right)^{*}\right\|=\left\|T_{n}-T\right\| \rightarrow 0$. Thus $T_{n}^{*} \rightarrow T^{*}$.
7. Let $S=I+T^{*} T$. Suppose $x \in N(S)$, then

$$
0=\langle x, S(x)\rangle=\langle x, x\rangle+\left\langle x, T^{*} T(x)\right\rangle=\langle x, x\rangle+\langle T(x), T(x)\rangle=\|x\|^{2}+\|T(x)\|^{2} .
$$

Hence, $\|x\|=0 \Rightarrow x=0$ and $N(S)=\{0\}$. By assignment 3 , we have S is injective.
8. (a) Since T is normal, $T T^{*}=T^{*} T$. We have $\langle T(x), T(x)\rangle=\left\langle x, T^{*} T(x)\right\rangle=\left\langle x, T T^{*}(x)\right\rangle=$ $\left\langle T^{*}(x), T^{*}(x)\right\rangle$. Thus $\|T(x)\|=\left\|T^{*}(x)\right\|$.
(b)

$$
\begin{gathered}
(T-\alpha I)(T-\alpha I)^{*}=(T-\alpha I)\left(T^{*}-\bar{\alpha} I\right)=T T^{*}-\bar{\alpha} T-\alpha T^{*}+\alpha \bar{\alpha} I \\
=T^{*} T-\bar{\alpha} T-\alpha T^{*}+\alpha \bar{\alpha} I=\left(T^{*}-\bar{\alpha} I\right)(T-\alpha I)=(T-\alpha I)^{*}(T-\alpha I)
\end{gathered}
$$

Thus $T-\alpha I$ is normal.
(c) By (a) and (b), $\|(T-\alpha I)(x)\|=\left\|(T-\alpha I)^{*}(x)\right\|=\left\|\left(T^{*}-\bar{\alpha} I\right)(x)\right\|$ for any $x \in H$. Hence,

$$
T(x)=\alpha x \Leftrightarrow(T-\alpha I)(x)=0 \Leftrightarrow\left(T^{*}-\bar{\alpha} I\right)(x) \Leftrightarrow T^{*}(x)=\bar{\alpha} x .
$$

(d) Let $T(x)=\lambda_{1} x, T(y)=\lambda_{2} y$. By (c), $T^{*}(y)=\overline{\lambda_{2}} y$. Then

$$
\alpha_{1}\langle x, y\rangle=\left\langle\alpha_{1} x, y\right\rangle=\langle T(x), y\rangle=\left\langle x, T^{*}(y)\right\rangle=\left\langle x, \overline{\lambda_{2}} y\right\rangle=\lambda_{2}\langle x, y\rangle .
$$

By assumption, $\lambda_{1} \neq \lambda_{2}$. This implies $\langle x, y\rangle=0$ and x, y are orthogonal.

