MMAT 5011 Analysis II
 2016-17 Term 2
 Assignment 3
 Suggested Solution

1. (a) Let $x, y \in X$ with $T(x)=T(y)$. Since T is linear, $T(x-y)=0$ and so $x-y \in$ $N(T)=\{0\}$. Thus $x-y=0$, i.e. $x=y$. This implies that T is injective.
(b) By part (a), it suffices to show $N(T)=\{0\}$. Let $x \in N(T)$. Then $\|x\|=\|T(x)\|=0$ and so $x=0$. This implies $N(T)=0$.
2. (a) Note that $\|1+2 t\|_{\infty}=\sup _{0 \leq t \leq 1}|1+2 t|=3$.

$$
\|T\|=\sup _{\|f\|_{1}=1}|T(f)|=\sup _{\|f\|_{1}=1}\left|\int_{0}^{1} f(t)(1+2 t) d t\right| \leq \sup _{\|f\|_{1}=1}\|f\|_{1}\|1+2 t\|_{\infty}=(1)(3)=3
$$

(b) Consider $f_{n}(t)=(n+1) t^{n}$.

$$
\begin{gathered}
\left\|f_{n}\right\|_{1}=\int_{0}^{1}(n+1) t^{n}=1 \\
\|T\|=\sup _{\|f\|_{1}=1}|T(f)| \geq\left|T\left(f_{n}\right)\right|=\left|\int_{0}^{1}(n+1) t^{n}(1+2 t) d t\right|=3-\frac{2}{n+2}
\end{gathered}
$$

Letting n tends to ∞, we have $\|T\| \geq 3$. Together with (a), we have $\|T\|=3$.
(c) We claim that $\|S\|=\max _{0 \leq t \leq 1}|g(t)|$.

Firstly,

$$
\|S\|=\sup _{\|f\|_{1}=1}|S(f)| \leq \sup _{\|f\|_{1}=1}\|f\|_{1}\|g\|_{\infty}=\max _{0 \leq t \leq 1}|g(t)| .
$$

To prove the reverse inequality, we construct $f_{n}(t)$ as follows.
Let $M=\max _{0 \leq t \leq 1}|g(t)|$. If $M=0, g(t) \equiv 0$ on $[0,1]$, it is obvious $\|S\|=0$. Without loss of generality, we assume $g\left(x_{0}\right)=M>0, x_{0} \in(0,1)$ (for $g\left(x_{0}\right)=-M$ and the case $x_{0}=0,1$ we can apply similar procedures as below). For each $n>0$, by continuity of $g(t)$, there exists $r_{n}>0$ such that $g(t)>M-\frac{1}{n}$ for all $t \in\left(x_{0}-r_{n}, x_{0}+r_{n}\right) \subset[0,1]$. Define

$$
f_{n}(t)= \begin{cases}0, & t \in\left[0, x_{0}-r_{n}\right], \\ \frac{2}{r_{n}}\left(t-x_{0}+r_{n}\right), & t \in\left(x_{0}-r_{n}, x_{0}-\frac{r_{n}}{2}\right), \\ 1, & t \in\left[x_{0}-\frac{r_{n}}{2}, x_{0}+\frac{r_{n}}{2}\right], \\ 1-\frac{2}{r_{n}}\left(t-x_{0}-\frac{r_{n}}{2}\right), & t \in\left(x_{0}+\frac{r_{n}}{2}, x_{0}+r_{n}\right), \\ 0, & t \in\left[x_{0}+r_{n}, 1\right] .\end{cases}
$$

Then f_{n} is continuous on $[0,1]$ and $\left\|f_{n}\right\|_{1}=\frac{3}{2} r_{n}$. For all large $n, M-\frac{1}{n}>0$. Then

$$
\begin{gathered}
\|S\|=\sup _{\left\|f_{n}\right\|_{1} \neq 0} \frac{\left|S\left(f_{n}\right)\right|}{\left\|f_{n}\right\|_{1}} \geq \frac{\left|\int_{0}^{1} f_{n}(t) g(t) d t\right|}{\left\|f_{n}\right\|_{1}}=\frac{\left|\int_{x_{0}-r_{n}}^{x_{0}+r_{n}} f_{n}(t) g(t) d t\right|}{\frac{3}{2} r_{n}} \\
\geq \frac{\left(M-\frac{1}{n}\right)\left|\int_{x_{0}-r_{n}}^{x_{0}+r_{n}} f_{n}(t) d t\right|}{\frac{3}{2} r_{n}}=M-\frac{1}{n} .
\end{gathered}
$$

Letting $n \rightarrow \infty$, we get $\|S\| \geq M$. Thus completes the proof.
3. T_{n} is a Cauchy sequence in $B(X, Y)$. For any $\varepsilon>0$, there exists $N>0$, such that $\left\|T_{n}-T_{m}\right\| \leq \varepsilon$, whenever $n, m>N$. Thus

$$
\left|T_{n}(x)-T_{m}(x)\right| \leq\left\|T_{n}-T_{m}\right\|\|x\| \leq \varepsilon\|x\|
$$

For every fixed x, the right hand side $\varepsilon\|x\|$ can be made arbitrarily small. Hence, $\left(T_{n}(x)\right)$ is a Cauchy sequence. Since Y is a Banach space, $T_{n}(x)$ is a convergent sequence in Y.
4. Let $f(x, y)=a x+b y \in\left(\mathbb{R}^{2}\right)^{\prime}$,

$$
\|f\|=\sup _{\|(x, y)\|=1}|a x+b y| \leq \sup _{\|(x, y)\|=1} \sqrt{a^{2}+b^{2}} \sqrt{x^{2}+y^{2}}=\sqrt{a^{2}+b^{2}}
$$

The above equality holds when $a y=b x$, thus $\|f\|=\sqrt{a^{2}+b^{2}}$. Consequently,

$$
\|S(f)\|=\|(a, b)\|=\sqrt{a^{2}+b^{2}}=\|f\| .
$$

5. Let $y \in V \backslash Z$. Note that every vector x of V can be expressed uniquely as $z+\alpha y$ for some $z \in Z$ and $\alpha \in \mathbb{R}$. Then $f(x)=f(z+\alpha y)=f(z)+\alpha f(y)=\alpha f(y)$. In the same way, $g(x)=\alpha g(y)$. Note that $y \notin Z=N(g)$ and so $g(y) \neq 0$. Let $c=f(y) / g(y)$, then $f(x)=\alpha f(y)=c \alpha g(y)=c g(x)$.
6. Assume on the contrary $x \neq y$. Let $z=x-y \neq 0$. Define a linear functional f on $Z=\operatorname{span}\{z\}=\{a z: a \in \mathbb{R}\}$ by $f(a z)=a$. By Hahn-Banach Theorem, there exists a linear extension \tilde{f} on X such that $\|f\|=\|\tilde{f}\|$. Since $\tilde{f}(z)=f(z) \neq 0$, we have $\tilde{f}(x) \neq \tilde{f}(y)$, which is a contradiction.
7. (a) Let $x \in c$. $|f(x)|=\left|\lim _{i \rightarrow \infty} x_{i}\right| \leq\|x\|_{\infty}$, thus f is bounded and $\|f\| \leq 1$. Let $x=\left(1-\frac{1}{n}\right)_{n=1}^{\infty}$, then $|f(x)|=\left|\lim _{i \rightarrow \infty} x_{i}\right|=1,\|f\|=1$.
(b) Take $e_{n} \in Z$ the n-th unit sequence, then $y_{n}=T(y)\left(e_{n}\right)=0$. Thus $y=0$ and $T(y)$ is the zero linear functional on l^{∞}.
(c) By Holder's inequality, $|T(y)(x)| \leq\|y\|_{1}\|x\|_{\infty},\|T(y)\| \leq\|y\|_{1}$. For ther reverse inequality, let

$$
x_{i}=\operatorname{sign} y_{i}= \begin{cases}1, & y_{i}>0 \\ 0, & y_{i}=0 \\ -1, & y_{i}<0\end{cases}
$$

Then $\|x\|_{\infty}=1,|T(y)(x)|=\sum_{i=1}^{\infty}\left|y_{i}\right|=\|y\|_{1}$. Thus $\|T(y)\| \geq\|y\|_{1}$.
(d) Let $y_{1}, y_{2} \in l^{1}, T\left(y_{1}\right)=T\left(y_{2}\right)$. Then $T\left(y_{1}-y_{2}\right)(x)=0$ for all $x \in Z$. By (b), we have $y_{1}-y_{2}=0, y_{1}=y_{2}, T$ is injective.
Let f be the linear functional in (a). By Hahn-Banach Theorem, there exists a linear extension g such that $g=f$ on c and $\|g\|=\|f\|=1$. If there exists some $y \in l^{1}$ such that $T(y)=g$. Then $y_{n}=T(y)\left(e_{n}\right)=g\left(e_{n}\right)=f\left(e_{n}\right)=0$ for all n. Thus $g=0$ which is a contradiction, T is not surjective.
8. Omitted.

