MMAT 5011 Analysis II
 2016-17 Term 2
 Assignment 2
 Suggested Solution

1. (a) Since A is measure zero, for any $\varepsilon>0$, we can find finite/countable open intervals $\left(a_{i}, b_{i}\right), i=1,2, \ldots, n(n$ can be $\infty)$, such that $A \subset \bigcup_{i}\left(a_{i}, b_{i}\right)$ and $\sum_{i}\left|b_{i}-a_{i}\right|<\varepsilon$. Thus $B \subset A \subset \bigcup_{i}\left(a_{i}, b_{i}\right)$ with $\sum_{i}\left|b_{i}-a_{i}\right|<\varepsilon$. Hence B is measure zero.
(b) Same as in (a), for any $\varepsilon>0$, we have finite/countable open intervals ($a_{i, j}, b_{i, j}$), $j=$ $1,2, \ldots, n_{i}\left(n_{i}\right.$ can be $\left.\infty\right)$, such that $A_{i} \subset \bigcup_{j}\left(a_{i, j}, b_{i, j}\right)$ and $\sum_{j}\left|b_{i, j}-a_{i, j}\right|<\varepsilon / 2^{i}$. Thus $\bigcup_{i} A_{i} \subset \bigcup_{i} \bigcup_{j}\left(a_{i, j}, b_{i, j}\right)$ with $\sum_{i} \sum_{j}\left|b_{i, j}-a_{i, j}\right|<\sum_{i} \varepsilon / 2^{i}=\varepsilon$. Hence $\bigcup_{i} A_{i}$ is measure zero.
2. Denote by \mathcal{S} the set $\left\{c_{1} x_{1}+c_{2} x_{2}+\ldots+c_{n} x_{n}: c_{i}>0\right.$ for $\left.1 \leq i \leq n\right\}$. By lemma 2.4-1, there exists some positive constant c such that

$$
\left|c_{1} x_{1}+c_{2} x_{2}+\ldots+c_{n} x_{n}\right| \geq c\left(\left|c_{1}\right|+\left|c_{2}\right|+\ldots+\left|c_{n}\right|\right)
$$

holds for all $c_{i} \in \mathbb{R}, i=1,2, \ldots, n$. Let $x=c_{1} x_{1}+c_{2} x_{2}+\ldots+c_{n} x_{n} \in \mathcal{S}$.
Choose $r=c \cdot \min _{1 \leq i \leq n} c_{i}$. Then for any $y=b_{1} x_{1}+b_{2} x_{2}+\ldots+b_{n} x_{n} \in B(x, r)$, we have

$$
c\left(\left|c_{1}-b_{1}\right|+\left|c_{2}-b_{2}\right|+\ldots+\left|c_{n}-b_{n}\right|\right) \leq|x-y|<r=c \cdot \min _{1 \leq i \leq n} c_{i} .
$$

Hence, for any $i,\left|c_{i}-b_{i}\right|<c_{i}$ and so $b_{i}>0$. Hence $y \in \mathcal{S}$ and $B(x, r) \subset \mathcal{S}$. This proves \mathcal{S} is an open subset of X.
3. (a) Let $\sum_{i=1}^{\infty} x_{i}$ be an absolute convergent series in X. Then $\sigma_{k}=\sum_{i=1}^{k}\left\|x_{i}\right\|$ is a convergent sequence. Consequently, σ_{k} is a Cauchy sequence. Thus for any $\varepsilon>0$, there exists $N>0$ such that

$$
\left|\sigma_{m}-\sigma_{n}\right| \leq \varepsilon, \text { whenever } m, n>N .
$$

Hence (we assume $m<n$ here)

$$
\left\|s_{n}-s_{m}\right\|=\left\|\sum_{i=m+1}^{n} x_{i}\right\| \leq \sum_{i=m+1}^{n}\left\|x_{i}\right\|=\left|\sigma_{n}-\sigma_{m}\right| \leq \varepsilon .
$$

This implies s_{k} is a Cauchy sequence in X. Since X is a Banach space (i.e. a complete normed space), the sequence s_{k} is convergent.
(b) Let X be the subspace of l^{1} consisting of all sequences with finitely many non-zero terms. In other words,

$$
X=\left\{\vec{a}=\left(a_{1}, a_{2}, \ldots\right): \exists N>0 \text { such that } a_{i}=0 \forall i \geq N\right\}
$$

Consider $x_{i}=\frac{1}{i^{2}} e_{i} \in X$. Then the sequence

$$
s_{k}=\sum_{i=1}^{k} x_{i}=\left(1, \frac{1}{2^{2}}, \frac{1}{3^{2}}, \ldots, \frac{1}{k^{2}}, 0,0, \ldots\right)
$$

is not convergent in X while

$$
\sigma_{k}=\sum_{i=1}^{k}\left\|x_{i}\right\|=\sum_{i=1}^{k} \frac{1}{\bar{i}^{2}}
$$

is convergent (in \mathbb{R}).
4. (a) Consider $x_{n}=\left(1, \frac{1}{2}, \cdots, \frac{1}{n}, 0,0, \cdots\right) \in Y$. The limit $\lim _{n \rightarrow \infty} x_{n}=\left(\frac{1}{n}\right)_{n=1}^{\infty} \notin Y$. Thus Y is not a closed subspace of the Banach space l^{∞}. By theorem 1.4-7, Y is not complete.
(b) Note that c_{0} is a closed in l^{∞}. Indeed, $c_{0}=\bar{Y}$. To prove this, suppose $x=$ $\left(x_{1}, x_{2}, \ldots\right) \in c_{0}$. Define $y_{n} \in Y$ by

$$
y_{n, i}= \begin{cases}x_{i} & \text { if } i \leq n \\ 0 & \text { if } i>n\end{cases}
$$

We want to show that $\lim _{n \rightarrow \infty} y_{n}=x$. For any ε, since $\lim _{i \rightarrow \infty} x_{i}=0$, there exists $N>0$ such that for all $i>N,\left|x_{i}\right|<\varepsilon$. It implies that $\left\|x-y_{n}\right\|<\varepsilon$ for all $n>N$. Hence $\lim _{n \rightarrow \infty} y_{n}=x$. This shows that $c_{0} \subset \bar{Y}$.
Next, suppose that $y_{n} \in Y$ and $\lim _{n \rightarrow \infty} y_{n}=x \in l^{\infty}$. We want to show that $x \in c_{0}$. For any ε, since $\lim _{n \rightarrow \infty} y_{n}=x$, there exists n such that $\left\|x-y_{n}\right\|<\varepsilon$. Since $y_{n} \in Y$, there exists $N>0$ such that $y_{n, i}=0$ for all $i>N$. Hence,

$$
\left|x_{i}\right|=\left|x_{i}-y_{n, i}\right| \leq\left\|y_{n}-x\right\|<\varepsilon
$$

for all $i>N$. This proves $\lim _{i \rightarrow \infty} x_{i}=0$ and so $x \in c_{0}$. It shows that $\bar{Y} \subset c_{0}$.
Hence, $c_{0}=\bar{Y}$ is closed in the Banach space l^{∞}. By theorem 1.4-7, c_{0} is complete.
5. $(\Rightarrow) T$ is bounded implies that there exists a real constant $c>0$ such that $\|T(x)\| \leq c\|x\|$ for all $x \in X$. Since A is bounded, we can also find a real constant $M>0$ such that $\|x\| \leq M$ for all $x \in A$. Thus $\|T(x)\| \leq c\|x\| \leq c M$ for any $x \in A$.
(\Leftarrow) Consider $A=\{x \in X,\|x\|=1\}$. Since A is bounded, $T(A)$ is also bounded. Hence, $\|T(x)\| \leq N$ for some $N>0$ and all $x \in A$. For any nonzero $x \in X, \frac{x}{\|x\|}$ is in A. Thus $\left\|T\left(\frac{x}{\|x\|}\right)\right\| \leq N \Leftrightarrow\|T(x)\| \leq N\|x\|$, i.e., T is bounded.
6. Consider $X=l^{1}$ and $T: X \rightarrow X$ be defined by $T\left(\left(x_{i}\right)_{i=1}^{\infty}\right)=\left(\left(1-\frac{1}{i}\right) x_{i}\right)_{i=1}^{\infty}$.

For any nonzero $x \in X,\left|\left(1-\frac{1}{i}\right) x_{i}\right|<\left|x_{i}\right|$ for some i. Hence

$$
\|T(x)\|=\sum_{i}\left|\left(1-\frac{1}{i}\right) x_{i}\right|<\sum_{i}\left|x_{i}\right|=\|x\| .
$$

In particular, $\|T\| \leq 1$. To show $\|T\|=1$, consider $x_{n}=e_{n}=(0, \ldots, 0,1,0, \ldots)$ where the only non-zero term is the n-th term . Then $\left\|x_{n}\right\|=1,\left\|T\left(x_{n}\right)\right\|=1-\frac{1}{n} \rightarrow 1$ and so $\|T\|=\sup _{\|x\|=1}\|T(x)\| \geq 1$. Hence $\|T\|=1$.
7. Let $p_{n}(x)=(n+1) x^{n}$. Then $p_{n}^{\prime}(x)=n(n+1) x^{n-1}$.

$$
\left\|p_{n}\right\|=\int_{0}^{1}\left|(n+1) x^{n}\right| d x=1
$$

$$
\begin{gathered}
\left\|p_{n}^{\prime}\right\|=\int_{0}^{1}\left|n(n+1) x^{n-1}\right| d x=n+1 \\
\Rightarrow\|T\|=\sup _{\|p\|=1}\|T(p)\| \geq\left\|T\left(p_{n}\right)\right\|=\left\|p_{n}^{\prime}\right\|=n+1
\end{gathered}
$$

for all n, thus T is unbounded.
8. Let $[0,1] \subset \bigcup\left(a_{i}, b_{i}\right)$. Since $[0,1]$ is compact, we may assume the open cover consists of finitely many intervals. Also, by renaming the indexes if necessary, we may assume that $0 \in\left(a_{1}, b_{1}\right), b_{1} \in\left(a_{2}, b_{2}\right), b_{3} \in\left(a_{3}, b_{3}\right), \ldots, b_{n-1} \in\left(a_{n}, b_{n}\right)$ and $1 \in\left(a_{n}, b_{n}\right)$. Hence,

$$
\sum\left(b_{i}-a_{i}\right) \geq \sum_{i=1}^{n}\left(b_{i}-a_{i}\right)=b_{n}+\sum_{i=1}^{n-1}\left(b_{i}-a_{i+1}\right)-a_{1}>1+0-0=1 .
$$

It shows that $[0,1]$ is not measure zero.
9. (a) The sequence is not Cauchy in $\|\cdot\|_{\infty}$. For any integer $N>0$, choose $m=N+1, n=$ $2 N+2$. Note $m, n>N$ and

$$
\left|f_{n}\left(\frac{1}{2 N+2}\right)-f_{m}\left(\frac{1}{2 N+2}\right)\right|=\left|1-\frac{N+1}{2 N+2}\right|=\frac{1}{2} .
$$

Thus $\left\|f_{n}-f_{m}\right\|_{\infty} \geq \frac{1}{2}$. Since N is arbitrary, $\left(f_{n}\right)$ is not Cauchy (also not convergent).
(b) For any $\varepsilon>0$, let $N>\frac{1}{\varepsilon}$, for all $n>m>N$,

$$
\int_{-1}^{1}\left|f_{n}(x)-f_{m}(x)\right| d x=\int_{0}^{\frac{1}{m}}\left|f_{n}(x)-f_{m}(x)\right| d x \leq \int_{0}^{\frac{1}{m}} 1 d x=\frac{1}{m}<\varepsilon
$$

Thus $\left(f_{n}\right)$ is Cauchy. However, $f_{n} L^{1}$-converges to

$$
f(x)= \begin{cases}0, & x \in[-1,0] \\ 1, & t \in(0,1]\end{cases}
$$

which is not in $C[-1,1],\left(f_{n}\right)$ is not convergent in $C[-1,1]$.

