MMAT 5000 Analysis I, 2016/17, Test

Answer ALL Questions
29 Oct, 2016. 10:00-12:00

1. Let (X, d) be a metric space. Put $\rho(x, y):=\frac{d(x, y)}{1+d(x, y)}$, for all $x, y \in X$.
(i) (5 points) Show that ρ is a metric on X.
(ii) (8 points) Let $\left(x_{n}\right)$ be a sequence in X. Show that $\left(x_{n}\right)$ is convergent with respect to the metric d if and only if it is also convergent with respect to the metric ρ.
(iii) (7 points) Let A be a subset of X. Show that A is open with respect to d if and only if it is open with respect to ρ.
2. (i) (4 ponits) Let $A=\{\sqrt{2 n}: n=1,2, \ldots$.$\} . What is the closure of A$ in \mathbb{R} ?
(ii) (4 points) Let A be as in Part (i). What is the boundary set of A in \mathbb{R} ?
(iii) (4 points). For a pair of non-empty subsets A and B of \mathbb{R}, let $A+B$ be the set defined by $\{a+b: a \in A, b \in B\}$. Show that $\bar{A}+\bar{B} \subseteq \overline{A+B}$.
(iv) (8 points) If A and B both are non-empty closed subsets of \mathbb{R}, does it imply that the set $A+B$ is also closed in \mathbb{R} ?
3. Let $\left(X_{i}, d_{i}\right)_{i=1}^{\infty}$ be a sequence of metric spaces. Suppose that $d_{i}\left(x_{i}, y_{i}\right) \leq 1$ for all $x_{i}, y_{i} \in$ X_{i} and for all $i=1,2 \ldots$ Put $X:=\left\{\left(x_{i}\right): x_{i} \in X_{i}, i=1,2, \ldots\right\}$. Define

$$
d\left(\left(x_{i}\right),\left(y_{i}\right)\right)=\sum_{i=1}^{\infty} \frac{d_{i}\left(x_{i}, y_{i}\right)}{2^{i}}
$$

for $\left(x_{i}\right)$ and $\left(y_{i}\right)$ in X.
(i) (5 ponits) Show that d is a metric on X.
(ii) (7 points) Let W_{i} be a non-empty open subset of X_{i} for $i=1, \ldots, N$. where $1 \leq N \leq \infty$. Let $Y=\left\{\left(x_{i}\right) \in X: x_{i} \in W_{i}, \quad i=1,2, \ldots, N\right\}$. Show that if $N<\infty$, then Y is an open subset of X with respect to the metric d.
(iii) (8 points) Give an example to show that the assertion in Part (ii) does not hold in general if $N=\infty$.

1 Answer

(1.i) See the homework.
(1.ii) Notice that since $d(x, y) \geq 0$ for all $x, y \in X$, we see that $\rho(x, y)<1$ for all $x, y \in X$ and thus we have

$$
\begin{equation*}
d(x, y)=\frac{\rho(x, y)}{1-\rho(x, y)} \tag{1}
\end{equation*}
$$

for all $x, y \in X$. Thus we have $d\left(x_{n}, x\right) \rightarrow 0$ if and only if $\rho\left(x_{n}, x\right) \rightarrow 0$. So Part (ii) follows.
(1.iii) Suppose that A is ρ-open. Then for any $z \in A$, there is $r>0$ such that if $\rho(z, x)<r$ implies $x \in A$. On the other hand, notice that $\rho(x, y) \leq d(x, y)$ for all $x, y \in X$. So if $d(z, x)<r$, then $\rho(z, x)<r$ and hence $x \in A$. Thus A is d-open.
Conversely, assume that A is d-open. Let $z \in A$. So, there is $\delta>0$ such that if $d(z, x)<\delta$, then $x \in A$. On the other hand, if $\rho(x, y)<1 / 2$, then we have $d(x, y) \leq 2 \rho(x, y)$ by the Eq 1 above. Now take $0<r<\min (\delta / 2,1 / 2)$. So if $\rho(z, x)<r$, then we have $d(z, x) \leq 2 \rho(z, x)<2 r<\delta$. It follows that $x \in A$ by the choice of δ. So A is ρ-open.
(2.i) One can directly check that $\bar{A}=A$ (need to check).
(2.ii) The boundary set of A is A itself (need to check).
(2.iii) Let $x \in \bar{A}$ and $b \in \bar{B}$. Then there are sequences $\left(x_{n}\right)$ and $\left(y_{n}\right)$ in A and B respectively such that $\lim x_{n}=a$ and $\lim y_{n}=b$. This implies that $\lim \left(x_{n}+y_{n}\right)=x+y$ and so $x+y \in \overline{A+B}$.
(2.iv) Let A be as in Part (i) and $B=\{-\sqrt{2 n-1}: n=1,2, \ldots\}$. Then A and B both are closed subsets. Notice that $\lim (\sqrt{2 n}-\sqrt{2 n-1})=0$. So $0 \in \overline{A+B}$ but notice that $0 \notin A+B$. Therefore $A+B$ is not closed.
(3.i) Notice that since $d_{i} \leq 1$ on X_{i}. So the series d is convergent and thus d is well defined. Also one can directly check that d is a metric on X (check!).
(3.ii) Fix an element $a=\left(a_{i}\right) \in Y$. So $a_{i} \in W_{i}$ for all $i=1, \ldots, N$. Since each W_{i} is open in X_{i}, so for each $i=1,2 \ldots, N$, we can find $r_{i}>0$ such that $B\left(a_{i}, r_{i}\right) \subseteq W_{i}$. Let $0<r<\min \left\{\frac{r_{1}}{2}, \cdots, \frac{r_{N}}{2^{N}}\right\}$. Now if for $x=\left(x_{i}\right) \in X$ with $d(a, x)<r$, then $\frac{d_{i}\left(a_{i}, x_{i}\right)}{2^{i}}<r$ for all $i=1,2 \ldots$. In particular, we have $d_{i}\left(a_{i}, x_{i}\right)<r_{i}$ for all $i=1, \ldots, N$ by the choice of r and hence $x_{i} \in W_{i}$ for all $i=1, . ., N$. This gives $x \in Y$ if $x \in B(a, r)$. Therefore, a is an interior point of Y for all $a \in Y$.
(3.iii) Consider $X_{1}=X_{2}=\cdots=\{0,1\}$ and each d_{i} is the discrete metric on X_{i}. Put $W_{1}=W_{2} \cdots=\{0\}$. Then each W_{i} is open in X_{i} for all $i=1,2 \ldots$ and $Y=W_{1} \times W_{2} \times \cdots=$ $\{(0,0, \ldots)\}$. We are going to show that Y is not open. Let $a=(0,0, \ldots)$. It needs to show that for each $r>0$, there is $x=\left(x_{i}\right) \in X$ such that $d(a, x)<r$ but $x \neq a$. Notice that since $\lim _{j} \sum_{i \geq j} \frac{1}{2^{i}}=0$, there is a positive integer N such that $\sum_{i \geq N} \frac{1}{2^{i}}<r$. So if we let $x_{1}=0$ for all $i=1, . ., N-1$ and $x_{i}=1$ for $i \geq N$. This implies that

$$
d(a, x)=\sum_{i} \frac{d_{i}\left(a_{i}, x_{i}\right)}{2^{i}}=\sum_{i \geq N} \frac{d_{i}\left(a_{i}, x_{i}\right)}{2^{i}}=\sum_{i \geq N} \frac{1}{2^{i}}<r .
$$

So $x \in B(a, r)$ but $a \neq x$ as desired and hence Y is not open.

