Solution 3

Exercise 2.17

(i) Let V be a subset of X. A point $z \in V$ is said to be an interior point of V if there is $r>0$ such that $B(z, r) \subseteq V$. If we put $\operatorname{int}(V)$ the set of all interior points of V, show that $\operatorname{int}(V)$ is an open subset of X.
(ii) A metric d on X is said to be non-archimedean if it satisfies the strong triangle inequality, that is, $d(x, y) \leq \max (d(x, z), d(z, y))$ for all x, y and $z \in X$ (see also Example 1.2(iv)). Show that if d is a non-archimedan metric on X, then for every closed ball $\bar{B}(a, r):=\{x \in X: d(a, x) \leq r\}$ is an open set in X.

Solution. (i) Let $x \in \operatorname{int}(V)$. By the definition of interior points, there is $r>0$ such that $B(x, r) \subseteq V$. In particular, for any $y \in B(x, r / 2)$, we have

$$
B(y, r / 2) \subseteq B(x, r) \subseteq V
$$

so that $y \in \operatorname{int}(V)$. Thus

$$
B(x, r / 2) \subseteq \operatorname{int}(V)
$$

As $x \in \operatorname{int}(V)$ is arbitrary, we prove that $\operatorname{int}(V)$ is an open set.
(ii) Let $B=\bar{B}(a, r)$ be an arbitrary closed ball for some $r>0$. Let $x \in B$. We will show that $B(x, r) \subseteq B$. Indeed, if $y \in B(x, r)$, then

$$
d(a, y) \leq \max (d(a, x), d(x, y)) \leq \max (r, r)=r
$$

since d is a non-archimedean metric. Hence $y \in \bar{B}(a, r)=B$. Therefore $B(x, r) \subseteq B$ for any $x \in B$, whence B is open.

