Solution 3

Exercise 2.17

- (i) Let V be a subset of X. A point $z \in V$ is said to be an interior point of V if there is r > 0 such that $B(z,r) \subseteq V$. If we put int(V) the set of all interior points of V, show that int(V) is an open subset of X.
- (ii) A metric d on X is said to be non-archimedean if it satisfies the strong triangle inequality, that is, $d(x, y) \leq \max(d(x, z), d(z, y))$ for all x, y and $z \in X$ (see also Example 1.2(iv)). Show that if d is a non-archimedan metric on X, then for every closed ball $\overline{B}(a, r) := \{x \in X : d(a, x) \leq r\}$ is an open set in X.
- **Solution.** (i) Let $x \in int(V)$. By the definition of interior points, there is r > 0 such that $B(x,r) \subseteq V$. In particular, for any $y \in B(x,r/2)$, we have

$$B(y, r/2) \subseteq B(x, r) \subseteq V,$$

so that $y \in int(V)$. Thus

$$B(x, r/2) \subseteq \operatorname{int}(V).$$

As $x \in int(V)$ is arbitrary, we prove that int(V) is an open set.

(ii) Let $B = \overline{B}(a, r)$ be an arbitrary closed ball for some r > 0. Let $x \in B$. We will show that $B(x, r) \subseteq B$. Indeed, if $y \in B(x, r)$, then

$$d(a, y) \le \max(d(a, x), d(x, y)) \le \max(r, r) = r,$$

since d is a non-archimedean metric. Hence $y \in \overline{B}(a, r) = B$. Therefore $B(x, r) \subseteq B$ for any $x \in B$, whence B is open.

◀