Solution 2

Exercise 2.13

Let A be a non-empty subset of X. A point $a \in X$ is called a boundary point of A if $B(a, r) \cap A \neq \emptyset$ and $B(a, r) \cap A^{c} \neq \emptyset$ for all $r>0$, where A^{c} denotes the complement of A in X. The set of all boundary points, write ∂A, of A is called the boundary of A.
(i) Find the boundaries of \mathbb{Z} and \mathbb{Q} in \mathbb{R}.
(ii) Let $X=(0,1) \cup(2,3)$. Find the boundary of the set $(0,1)$ in X.
(iii) Show that the boundary ∂A is a closed subset of X.
(iv) Show that $\bar{A}=A \cup \partial A$.

Solution. (i) We show that $\partial \mathbb{Z}=\mathbb{Z}$. Let $x \in \mathbb{Z}$. Then for any $r>0$,

$$
x \in B(x, r) \cap \mathbb{Z} \text { and } x+\min \{r, 1 / 2\} \in B(x, r) \cap \mathbb{Z}^{c}
$$

Thus $\mathbb{Z} \subseteq \partial \mathbb{Z}$. On the other hand, if $x \in \mathbb{Z}^{c}$, then

$$
r_{0}:=\min \{|x-n|: n \in \mathbb{Z}\}>0
$$

so that $B\left(x, r_{0} / 2\right) \cap \mathbb{Z}=\emptyset$, and hence $x \notin \partial \mathbb{Z}$. Therefore $\partial \mathbb{Z} \subseteq \mathbb{Z}$.
Next we show that $\partial \mathbb{Q}=\mathbb{R}$. Let $x \in \mathbb{R}$. By the density of rational and irrational numbers in \mathbb{R}, for any $\varepsilon>0$, there are $p \in \mathbb{Q}$ and $q \in \mathbb{R} \backslash \mathbb{Q}$ such that

$$
|x-p|<\varepsilon, \quad|x-q|<\varepsilon
$$

Equivalently, for any $r>0$,

$$
B(x, r) \cap \mathbb{Q} \neq \emptyset, \quad \text { and } B(x, r) \cap \mathbb{Q}^{c} \neq \emptyset .
$$

Thus $x \in \partial \mathbb{Q}$, and hence $\mathbb{R} \subseteq \partial \mathbb{Q}$. $\partial \mathbb{Q} \subseteq \mathbb{R}$ is trivial.
(ii) We show that $\partial(0,1)=\emptyset$ in X. If $x \in(0,1)$, then

$$
B(x, 1 / 2) \cap(0,1)^{c}=B(x, 1 / 2) \cap(2,3)=\emptyset
$$

so that x is not a boundary point of $(0,1)$. If $x \in(2,3)$, then

$$
B(x, 1 / 2) \cap(0,1)=\emptyset,
$$

so that x is not a boundary point of $(0,1)$. We thus conclude that $\partial(0,1)=\emptyset$ in X.
(iii) From Definition 2.9, ∂A is closed in X if and only if $\overline{\partial A}=\partial A$. From Definition 2.5, $\overline{\partial A}=\partial A \cup D(\partial A)$, where $D(\partial A)$ is the set of all limit points of ∂A, given by

$$
\begin{equation*}
D(\partial A)=\{x \in X:(B(x, r) \backslash\{x\}) \cap \partial A \neq \emptyset \text { for all } r>0\} . \tag{1}
\end{equation*}
$$

Thus it suffices to show that $D(\partial A) \subseteq \partial A$. Let $x \in D(\partial A)$. Then, since $B(x, r) \supset$ $B(x, r) \backslash\{x\}$, (1) implies that

$$
B(x, r) \cap \partial A \neq \emptyset \text { for all } r>0
$$

Now, for any $r>0$, there is $x_{r} \in B(x, r / 2) \cap \partial A$, which satisfies

$$
B\left(x_{r}, s\right) \cap A \neq \emptyset \quad \text { and } B\left(x_{r}, s\right) \cap A^{c} \neq \emptyset \quad \text { for all } s>0 .
$$

In particular, since $B\left(x_{r}, r / 2\right) \subseteq B(x, r)$, we have

$$
B(x, r) \cap A \neq \emptyset \text { and } B(x, r) \cap A^{c} \neq \emptyset
$$

for all $r>0$. Thus $x \in \partial A$. Therefore ∂A is closed.
(iv) Suppose $x \in \partial A$. Then

$$
\begin{equation*}
B(x, r) \cap A \neq \emptyset \text { and } B(x, r) \cap A^{c} \neq \emptyset \quad \text { for all } r>0 . \tag{2}
\end{equation*}
$$

If further $x \notin A$, then (2) implies that

$$
(B(x, r) \backslash\{x\}) \cap A \neq \emptyset \quad \text { for all } r>0
$$

Thus $x \in D(A)$. Therefore $\partial A \backslash A \subseteq D(A)$, and hence $A \cup \partial A \subseteq A \cup D(A)=\bar{A}$.
On the other hand, suppose $x \in D(A)$. Then

$$
\begin{equation*}
(B(x, r) \backslash\{x\}) \cap A \neq \emptyset \quad \text { for all } r>0 \tag{3}
\end{equation*}
$$

If further $x \notin A$, then clearly

$$
\begin{equation*}
B(x, r) \cap A^{c} \neq \emptyset \quad \text { for all } r>0 . \tag{4}
\end{equation*}
$$

 $\bar{A}=A \cup D(A) \subseteq A \cup \partial A$.

Alternative proof using Proposition 2.6:

By Proposition 2.6, it is obvious that $\partial A \subseteq \bar{A}$. Hence $A \cup \partial A \subseteq A \cup \bar{A}=\bar{A}$.
Suppose $x \in \bar{A}$. By Proposition 2.6 again, we have

$$
B(x, r) \cap A \neq \emptyset \text { for all } r>0 .
$$

If $x \notin A$, then clearly $B(x, r) \cap A^{c} \neq \emptyset$ for all $r>0$. Thus $\bar{A} \backslash A \subseteq \partial A$, whence $\bar{A} \subseteq A \cup \partial A$.

