Solution 1

Exercise 1.7

1. Let (X, d) be a metric space. Define

$$
\rho(x, y)=\frac{d(x, y)}{1+d(x, y)}
$$

for $x, y \in X$. Show that ρ is also a metric on X.
Solution. Clearly $\rho: X \times X \rightarrow \mathbb{R}$ is a well-defined function. Now we check that ρ satisfies conditions (i)-(iv) in Definition 1.1: For any $x, y, z \in X$,
(i) $\rho(x, y)=\frac{d(x, y)}{1+d(x, y)} \geq 0$ (by condition (i) of d);
(ii) $\rho(x, y)=0$ if and only if $d(x, y)=0$ if and only if $x=y$ (by condition (ii) of d);
(iii) $\rho(x, y)=\frac{d(x, y)}{1+d(x, y)}=\frac{d(y, x)}{1+d(y, x)}=\rho(y, x)$ (by condition (iii) of d);
(iv) Note that $\phi(x):=\frac{x}{1+x}=1-\frac{1}{1+x}$ is an increasing function on $[0, \infty)$. Hence, by condition (iv) of d, we have

$$
\begin{aligned}
\rho(x, y) & =\phi(d(x, y)) \leq \phi(d(x, z)+d(z, y)) \\
& =\frac{d(x, z)}{1+d(x, z)+d(z, y))}+\frac{d(z, y)}{1+d(x, z)+d(z, y)} \\
& \leq \frac{d(x, z)}{1+d(x, z)}+\frac{d(z, y)}{1+d(z, y)} \\
& =\rho(x, z)+\rho(z, y)
\end{aligned}
$$

2. Let $\left(X, d_{X}\right),\left(Y, d_{Y}\right)$ be metric spaces. Define

$$
\rho\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right)=d_{X}\left(x, x^{\prime}\right)+d_{Y}\left(y, y^{\prime}\right)
$$

for $x, x^{\prime} \in X$ and $y, y^{\prime} \in Y$. Show that ρ is a metric on the product space $X \times Y=$ $\{(x, y): x \in X ; y \in Y\}$.

Solution. Clearly $\rho: X \times X \rightarrow \mathbb{R}$ is a well-defined function. Now we check that ρ satisfies conditions (i)-(iv) in Definition 1.1: For any $(x, y),\left(x^{\prime}, y^{\prime}\right),\left(x^{\prime \prime}, y^{\prime \prime}\right) \in X \times Y$,
(i) $\rho\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right)=d_{X}\left(x, x^{\prime}\right)+d_{Y}\left(y, y^{\prime}\right) \geq 0$;
(ii) $\rho\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right)=0$ if and only if $d_{X}\left(x, x^{\prime}\right)=0$ and $d_{Y}\left(y, y^{\prime}\right)=0$ if and only if $x=x^{\prime}$ and $y=y^{\prime}$ if and only if $(x, y)=\left(x^{\prime}, y^{\prime}\right)$;
(iii) $\rho\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right)=d_{X}\left(x, x^{\prime}\right)+d_{Y}\left(y, y^{\prime}\right)=d_{X}\left(x^{\prime}, x\right)+d_{Y}\left(y^{\prime}, y\right)=\rho\left(\left(x^{\prime}, y^{\prime}\right),(x, y)\right)$
(iv) By condition (iv) of d_{X} and d_{Y}, we have

$$
\begin{aligned}
\rho\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right) & =d_{X}\left(x, x^{\prime}\right)+d_{Y}\left(y, y^{\prime}\right) \\
& \leq d_{X}\left(x, x^{\prime \prime}\right)+d_{X}\left(x^{\prime \prime}, x^{\prime}\right)+d_{Y}\left(y, y^{\prime \prime}\right)+d_{Y}\left(y^{\prime \prime}, y^{\prime}\right) \\
& =\rho\left((x, y),\left(x^{\prime \prime}, y^{\prime \prime}\right)\right)+\rho\left(\left(x^{\prime \prime}, y^{\prime \prime}\right),\left(x^{\prime}, y^{\prime}\right)\right) .
\end{aligned}
$$

3. Let (X, d) be a metric space and let A be a subset of X. We say that A is bounded if there is $M>0$ such that $d\left(a, a^{\prime}\right) \leq M$ for all a, a^{\prime} in A.
Show that if $A_{1}, \ldots, A_{N}(N<\infty)$ are all bounded subsets of $X, A_{1} \cup \cdots \cup A_{N}$ is also a bounded subset of X.

Solution. Without loss of generality, we assume that each $A_{k}, k=1, \ldots, N$ is non-empty. For each $k=1, \ldots, N$, pick $a_{k} \in A_{k}$. Set $D=\max \left\{d\left(a_{j}, a_{k}\right): j, k=\right.$ $1, \ldots N\}$.
Since each $A_{k}, k=1, \ldots, N$, is bounded, there is $M_{k}>0$ such that $d\left(a, a^{\prime}\right) \leq M_{k}$ for all $a, a^{\prime} \in A_{k}$. Set $M=\max _{1 \leq k \leq N} M_{k}$ and $C=D+2 M$. Now for any $x, y \in$ $A_{1} \cup \cdots \cup A_{N}$, we have $x \in A_{i}, y \in A_{j}$ for some $i, j, 1 \leq i, j \leq N$. Therefore

$$
\begin{aligned}
d(x, y) & \leq d\left(x, a_{i}\right)+d\left(a_{i}, a_{j}\right)+d\left(a_{j}, y\right) \\
& \leq M+D+M=C
\end{aligned}
$$

Hence $A_{1} \cup \cdots \cup A_{N}$ is bounded.

