Solution 1

Exercise 1.7

1. Let (X, d) be a metric space. Define

$$\rho(x,y) = \frac{d(x,y)}{1+d(x,y)}$$

for $x, y \in X$. Show that ρ is also a metric on X.

Solution. Clearly $\rho: X \times X \to \mathbb{R}$ is a well-defined function. Now we check that ρ satisfies conditions (i)-(iv) in Definition 1.1: For any $x, y, z \in X$,

- (i) $\rho(x,y) = \frac{d(x,y)}{1+d(x,y)} \ge 0$ (by condition (i) of d);
- (ii) $\rho(x, y) = 0$ if and only if d(x, y) = 0 if and only if x = y (by condition (ii) of d);

(iii)
$$\rho(x,y) = \frac{d(x,y)}{1+d(x,y)} = \frac{d(y,x)}{1+d(y,x)} = \rho(y,x)$$
 (by condition (iii) of d);

(iv) Note that $\phi(x) := \frac{x}{1+x} = 1 - \frac{1}{1+x}$ is an increasing function on $[0, \infty)$. Hence, by condition (iv) of d, we have

$$\begin{split} \rho(x,y) &= \phi(d(x,y)) \leq \phi(d(x,z) + d(z,y)) \\ &= \frac{d(x,z)}{1 + d(x,z) + d(z,y)} + \frac{d(z,y)}{1 + d(x,z) + d(z,y)} \\ &\leq \frac{d(x,z)}{1 + d(x,z)} + \frac{d(z,y)}{1 + d(z,y)} \\ &= \rho(x,z) + \rho(z,y). \end{split}$$

2. Let (X, d_X) , (Y, d_Y) be metric spaces. Define

$$\rho((x, y), (x', y')) = d_X(x, x') + d_Y(y, y')$$

for $x, x' \in X$ and $y, y' \in Y$. Show that ρ is a metric on the product space $X \times Y = \{(x, y) : x \in X; y \in Y\}.$

Solution. Clearly $\rho: X \times X \to \mathbb{R}$ is a well-defined function. Now we check that ρ satisfies conditions (i)-(iv) in Definition 1.1: For any $(x, y), (x', y'), (x'', y'') \in X \times Y$,

- (i) $\rho((x,y),(x',y')) = d_X(x,x') + d_Y(y,y') \ge 0;$
- (ii) $\rho((x,y),(x',y')) = 0$ if and only if $d_X(x,x') = 0$ and $d_Y(y,y') = 0$ if and only if x = x' and y = y' if and only if (x,y) = (x',y');
- (iii) $\rho((x,y),(x',y')) = d_X(x,x') + d_Y(y,y') = d_X(x',x) + d_Y(y',y) = \rho((x',y'),(x,y))$

(iv) By condition (iv) of d_X and d_Y , we have

$$\rho((x,y),(x',y')) = d_X(x,x') + d_Y(y,y')$$

$$\leq d_X(x,x'') + d_X(x'',x') + d_Y(y,y'') + d_Y(y'',y')$$

$$= \rho((x,y),(x'',y'')) + \rho((x'',y''),(x',y')).$$

3. Let (X, d) be a metric space and let A be a subset of X. We say that A is bounded if there is M > 0 such that $d(a, a') \leq M$ for all a, a' in A.

Show that if A_1, \ldots, A_N $(N < \infty)$ are all bounded subsets of $X, A_1 \cup \cdots \cup A_N$ is also a bounded subset of X.

Solution. Without loss of generality, we assume that each A_k , k = 1, ..., N is non-empty. For each k = 1, ..., N, pick $a_k \in A_k$. Set $D = \max\{d(a_j, a_k) : j, k = 1, ..., N\}$.

Since each A_k , k = 1, ..., N, is bounded, there is $M_k > 0$ such that $d(a, a') \leq M_k$ for all $a, a' \in A_k$. Set $M = \max_{1 \leq k \leq N} M_k$ and C = D + 2M. Now for any $x, y \in A_1 \cup \cdots \cup A_N$, we have $x \in A_i, y \in A_j$ for some $i, j, 1 \leq i, j \leq N$. Therefore

$$d(x, y) \le d(x, a_i) + d(a_i, a_j) + d(a_j, y)$$
$$\le M + D + M = C.$$

Hence $A_1 \cup \cdots \cup A_N$ is bounded.

◀