THE CHINESE UNIVERSITY OF HONG KONG

Department of Mathematics

MATH5022 Theory of Partial Differential Equations, 2nd Term 2016-17

Homework 1 (Due: March 2).

Please hand in your answers to ALL questions in class on or before the due date.
Q1. Show the Multinomial Theorem:

$$
\left(x_{1}+x_{2}+\cdots x_{n}\right)^{m}=\sum_{|\alpha|=m}\binom{|\alpha|}{\alpha} x^{\alpha}
$$

where $\binom{|\alpha|}{\alpha}:=\frac{|\alpha|!}{\alpha!}$, and $x^{\alpha}=x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \cdots x_{n}^{\alpha_{n}}$. Explain with it

$$
\sum_{|\alpha|=m} \frac{1}{\alpha!}=\frac{n^{m}}{m!}
$$

Q2. Find the nonzero solutions in unbounded domains:

$$
\begin{aligned}
\Delta u=0 & \text { in } \Omega, \\
u=0 & \text { on } \partial \Omega .
\end{aligned}
$$

(a) $\Omega=\left\{x \in \mathbb{R}^{n}:|x|>r\right\}$ with $r>0$.
(b) $\Omega=\left\{x \in \mathbb{R}^{n}: x_{n}>0\right\}$.

Explain a little why one loses the maximum principle here.
Q3. Show the Taylor's formula with the integral remainder, i.e., for $f \in C^{m+1}\left(B_{r}\left(x_{0}\right)\right)$,

$$
f(x)=\sum_{|\alpha| \leq m} \frac{D^{\alpha} f\left(x_{0}\right)}{\alpha!}\left(x-x_{0}\right)^{\alpha}+R_{m}(x), \quad \forall x \in B_{r}\left(x_{0}\right)
$$

where

$$
R_{m}(x)=\sum_{|\alpha|=m+1} \frac{m+1}{\alpha!}\left(\int_{0}^{1}(1-s)^{m} D^{\alpha} f\left(x_{0}+s\left(x-x_{0}\right)\right) d s\right)\left(x-x_{0}\right)^{\alpha} .
$$

Q4. Use the mean value property to show that for a harmonic function $u \in$ $C^{1}\left(\bar{B}_{1}\right)$,

$$
\begin{gathered}
\sup _{B_{1 / 2}}|u| \leq c\left(\int_{B_{1}}|u|^{p}\right)^{1 / p} \\
\sup _{B_{1 / 2}}|D u| \leq c \max _{B_{1}}|u|
\end{gathered}
$$

where $c=c(n)$ is a constant depending only on n.

Q5. Show that a harmonic function in \mathbb{R}^{n} with finite L^{2}-norm is identically zero, and also that a harmonic function in \mathbb{R}^{n} with finite Dirichlet integral is constant.
Q6. For the problem

$$
\begin{aligned}
\Delta u+2 u & =0 \text { in } \Omega, \\
u & =0 \text { on } \partial \Omega,
\end{aligned}
$$

where Ω is a rectangle domain $(0, \pi) \times(0, \pi)$ in \mathbb{R}^{2}, does one have the maximum principle? Explain your answer.

Q7. Let

$$
L:=a_{i j}(x) D_{i j}+b_{i}(x) D_{i}+c(x)
$$

be a linear uniformly elliptic operator with coefficients in $C(\bar{\Omega})$. Apply the Hopf's maximum principle to discuss the uniqueness of solutions in $C(\bar{\Omega}) \cap$ $C^{2}(\Omega)$ for the BVP

$$
\begin{aligned}
L u & =f \quad \text { in } \Omega, \\
\frac{\partial u}{\partial n}+\alpha(x) u & =\phi \quad \text { on } \partial \Omega .
\end{aligned}
$$

Q8. (Serrin's Comparison Principle) Let $u \in C(\bar{\Omega}) \cap C^{2}(\Omega)$ satisfy $L u \geq 0$ in Ω, where L is defined as in Q7. Show that if $u \leq 0$ in Ω, then either $u<0$ in Ω or $u \equiv 0$ in Ω.

Q9. (Varadham's Comparison Principle) Let $u \in C(\bar{\Omega}) \cap C^{2}(\Omega)$ satisfy $L u \geq 0$ in Ω with $u \leq 0$ on $\partial \Omega$, where L is defined as in Q7. Show that if the volume of Ω is small enough then $u \leq 0$ in Ω.

Q10. Let $u \in C(\bar{\Omega}) \cap C^{2}(\Omega)$ satisfy

$$
\operatorname{det}\left(D^{2} u\right)=f(x)
$$

in Ω for some $f \in C(\bar{\Omega})$. Show that

$$
\sup _{\Omega}|u| \leq \sup _{\partial \Omega}|u|+\frac{\operatorname{diam}(\Omega)}{\left|B_{1}\right|^{1 / n}}\|f\|_{L^{n}(\Omega)} .
$$

