THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH5022 Theory of Partial Differential Equations, 2nd Term 2016-17

Homework 1 (Due: March 2).

Please hand in your answers to ALL questions in class on or before the due date.

Q1. Show the Multinomial Theorem:

$$(x_1 + x_2 + \cdots + x_n)^m = \sum_{|\alpha|=m} {|\alpha| \choose \alpha} x^{\alpha},$$

where $\binom{|\alpha|}{\alpha} := \frac{|\alpha|!}{\alpha!}$, and $x^{\alpha} = x_1^{\alpha_1} x_2^{\alpha_2} \cdots x_n^{\alpha_n}$. Explain with it $\sum_{|\alpha|=m} \frac{1}{\alpha!} = \frac{n^m}{m!}.$

Q2. Find the nonzero solutions in unbounded domains:

$$\Delta u = 0 \quad \text{in } \Omega,$$
$$u = 0 \quad \text{on } \partial \Omega.$$

(a)
$$\Omega = \{x \in \mathbb{R}^n : |x| > r\}$$
 with $r > 0$.
(b) $\Omega = \{x \in \mathbb{R}^n : x_n > 0\}.$

Explain a little why one loses the maximum principle here.

Q3. Show the Taylor's formula with the integral remainder, i.e., for $f \in C^{m+1}(B_r(x_0))$,

$$f(x) = \sum_{|\alpha| \le m} \frac{D^{\alpha} f(x_0)}{\alpha!} (x - x_0)^{\alpha} + R_m(x), \quad \forall x \in B_r(x_0),$$

where

$$R_m(x) = \sum_{|\alpha|=m+1} \frac{m+1}{\alpha!} \left(\int_0^1 (1-s)^m D^\alpha f(x_0 + s(x-x_0)) \, ds \right) (x-x_0)^\alpha.$$

Q4. Use the mean value property to show that for a harmonic function $u \in C^1(\overline{B}_1)$,

$$\sup_{B_{1/2}} |u| \le c \left(\int_{B_1} |u|^p \right)^{1/p},$$
$$\sup_{B_{1/2}} |Du| \le c \max_{B_1} |u|,$$

where c = c(n) is a constant depending only on n.

- $\mathbf{2}$
- **Q5.** Show that a harmonic function in \mathbb{R}^n with finite L^2 -norm is identically zero, and also that a harmonic function in \mathbb{R}^n with finite Dirichlet integral is constant.
- **Q6.** For the problem

$$\begin{aligned} \Delta u + 2u &= 0 \quad \text{in } \Omega, \\ u &= 0 \quad \text{on } \partial \Omega, \end{aligned}$$

where Ω is a rectangle domain $(0, \pi) \times (0, \pi)$ in \mathbb{R}^2 , does one have the maximum principle? Explain your answer.

Q7. Let

$$L := a_{ij}(x)D_{ij} + b_i(x)D_i + c(x)$$

be a linear uniformly elliptic operator with coefficients in $C(\bar{\Omega})$. Apply the Hopf's maximum principle to discuss the uniqueness of solutions in $C(\bar{\Omega}) \cap C^2(\Omega)$ for the BVP

$$Lu = f \text{ in } \Omega,$$

$$\frac{\partial u}{\partial n} + \alpha(x)u = \phi \text{ on } \partial\Omega.$$

- **Q8.** (Serrin's Comparison Principle) Let $u \in C(\overline{\Omega}) \cap C^2(\Omega)$ satisfy $Lu \ge 0$ in Ω , where L is defined as in **Q7**. Show that if $u \le 0$ in Ω , then either u < 0 in Ω or $u \equiv 0$ in Ω .
- **Q9.** (Varadham's Comparison Principle) Let $u \in C(\overline{\Omega}) \cap C^2(\Omega)$ satisfy $Lu \ge 0$ in Ω with $u \le 0$ on $\partial\Omega$, where L is defined as in **Q7**. Show that if the volume of Ω is small enough then $u \le 0$ in Ω .
- **Q10.** Let $u \in C(\overline{\Omega}) \cap C^2(\Omega)$ satisfy

$$\det(D^2 u) = f(x)$$

in Ω for some $f \in C(\overline{\Omega})$. Show that

$$\sup_{\Omega} |u| \le \sup_{\partial \Omega} |u| + \frac{\operatorname{diam}(\Omega)}{|B_1|^{1/n}} ||f||_{L^n(\Omega)}.$$