CUHK

Suggested Solution to Assignment 5

Exercise 5.1

2. (a)

$$A_m = 2\int_0^1 x^2 \sin m\pi x \, dx = -2\frac{x^2}{m\pi} \cos m\pi x \Big|_0^1 + \int_0^1 \frac{4x}{m\pi} \cos m\pi x \, dx$$
$$= \frac{2(-1)^{m+1}}{m\pi} + \frac{4(-1)^m - 4}{m^3\pi^3}.$$

(b)

$$A_m = 2\int_0^1 x^2 \cos m\pi x dx = 2\frac{x^2}{m\pi} \sin m\pi x \Big|_0^1 - \int_0^1 \frac{4x}{m\pi} \sin m\pi x dx = (-1)^m \frac{4}{m^2 \pi^2}.$$

4. To find the Fourier series of the function $f(x) = |\sin x|$, we first note that this is an even function so that it has a cos-series. If we integrate from 0 to π and multiply the result by 2, we can take the function $\sin x$ instead of $|\sin x|$ so that

$$a_0 = \frac{2}{\pi} \int_0^\pi \sin x \, dx = \frac{4}{\pi}.$$
$$a_n = \frac{2}{\pi} \int_0^\pi \sin x \cos nx \, dx = \begin{cases} \frac{4}{(1-n^2)\pi} & n \text{ even} \\ 0 & n \text{ odd} \end{cases}$$

Hence, we have

$$f(x) = \frac{2}{\pi} - \frac{4}{\pi} \left(\frac{\cos 2x}{2^2 - 1} + \frac{\cos 4x}{4^2 - 1} + \frac{\cos 6x}{6^2 - 1} + \cdots\right)$$

Substituting x = 0 and $x = \frac{\pi}{2}$, we have

$$\sum_{n=1}^{\infty} \frac{1}{4n^2 - 1} = \frac{1}{2}.$$
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{4n^2 - 1} = \frac{1}{2} - \frac{\pi}{4}.$$

5. (a) From Page.109, we have

$$x = \sum_{m=1}^{\infty} (-1)^{m+1} \frac{2l}{m\pi} \sin \frac{m\pi x}{l}.$$

Integration of both sides gives

$$\frac{x^2}{2} = c + \sum_{m=1}^{\infty} (-1)^m \frac{2l^2}{m^2 \pi^2} \cos \frac{m\pi x}{l}.$$

The constant of the integration is the missing coefficient

$$c = \frac{A_0}{2} = \frac{1}{l} \int_0^l \frac{x^2}{2} dx = \frac{l^2}{6}.$$

(b) By setting x = 0 gives

$$0 = \frac{l^2}{6} + \sum_{m=1}^{\infty} (-1)^m \frac{2l^2}{m^2 \pi^2}$$

or

$$\frac{\pi^2}{12} = \sum_{m=1}^{\infty} \frac{(-1)^{m+1}}{m^2}.$$

8. The key point in the problem above is to solve the following PDE problem.

$$u_t - u_{xx} = 0, \quad u(x,0) = \phi(x), \quad u(0,t) = u(l,t) = 0$$
$$\phi(x) = \begin{cases} \frac{3}{2}, & 0 < x < \frac{2}{3}, \\ 3 - 3x, & \frac{2}{3} < x < 1 \end{cases}.$$

Through a standard procedure of separation variable method, we obtain

$$u(x,t) = \sum a_n e^{-n^2 \pi^2 t} \sin n\pi x,$$

where $a_n = 2 \int_0^1 \phi(x) \sin n\pi x dx = \frac{9}{n^2 \pi^2} \sin \frac{2\pi n}{3}$, so the solution T = u(x, t) + x.

9. From Section 4.2.7, we see that the general formula to wave equation with Neu- mann boundary condition is

$$u(x,t) = \frac{1}{2}(A_0 + B_0 t) + \sum_{n=1}^{\infty} (A_n \cos nct + B_n \sin nct) \cos nx,$$

where

$$\phi(x) = \frac{1}{2}A_0 + \sum_{n=1}^{\infty} A_n \cos nx, \quad \psi(x) = \frac{1}{2}B_0 + \sum_{n=1}^{\infty} ncB_n \cos nx.$$

By further calculation, we have $B_0 = 1$, $B_2 = \frac{1}{4c}$ and the other coefficients are all zero. Hence, the solution is

$$u(x,t) = \frac{1}{2}t + \frac{\sin 2ct\cos 2x}{4c}. \qquad \Box$$

Exercise 5.2

1. (a)Odd, period = $2\pi/a$;

(b)neither even nor odd nor periodic;

(c)even if m is even, odd if m is odd, and not periodic;

- (d)even, not periodic;
- (e)even, period = $b\pi$;

(f)odd, not periodic.

2. Suppose $\alpha = p/q$, where p, q are co-prime to each other. Then is is not difficult to see that $S = 2q\pi$ is a period of the function. Suppose $2q\pi = mT$, where T is the minimal period. Then

$$\cos x + \cos \alpha x = \cos(x+T) + \cos(\alpha x + \alpha T).$$

Let x = 0, we have the above equality holds iff q/m, p/m are both integers. Therefore, m = 1. Hence, we finish the problem. \Box

4. $\phi(x) = \frac{1}{2}A_0 + \sum_{n=1}^{\infty} (A_n \cos \frac{n\pi x}{l} + B_n \sin \frac{n\pi x}{l})$ where $A_n = \frac{1}{l} \int_{-l}^{l} \phi(x) \cos \frac{n\pi x}{l} dx (n = 0, 1, 2, ...)$ and $B_n = \frac{1}{l} \int_{-l}^{l} \phi(x) \sin \frac{n\pi x}{l} dx (n = 1, 2, ...)$.

(a) $\phi(x)$ is an odd function and $\cos \frac{n\pi x}{l}$ is an even function, thus, by (5), $A_n = 0$.

(b) $\phi(x)$ is an even function and $\sin \frac{n\pi x}{l}$ is an odd function, thus, by (5), $B_n = 0$.

5. Let $a_m = \frac{2}{l} \int_0^l \phi(x) \sin \frac{m\pi x}{l}$. Then we have

$$\phi(x) = \sum_{m=1}^{\infty} a_m \sin \frac{m\pi x}{l}. \qquad \Box$$

- 7. The full series on $(-\pi,\pi)$ is $\widetilde{\phi}(x') = \frac{1}{2}A_0 + \sum_{n=1}^{\infty} (A_n \cos nx' + B_n \sin nx')$ where $A_n = \frac{1}{\pi} \int_{-\pi}^{\pi} \widetilde{\phi}(x) \cos nx dx (n = 0, 1, 2, ...)$ and $B_n = \frac{1}{\pi} \int_{-\pi}^{\pi} \widetilde{\phi}(x) \sin nx dx (n = 1, 2, ...)$. Set $x' = (\pi/l)x$ we obtain $\phi(x) = \widetilde{\phi}((\pi/l)x) = \frac{1}{2}A_0 + \sum_{n=1}^{\infty} (A_n \cos \frac{n\pi x}{l} + B_n \sin \frac{n\pi x}{l})$ where $A_n = \frac{1}{\pi} \int_{-\pi}^{\pi} \widetilde{\phi}(x) \cos nx dx = \frac{1}{\pi} \int_{-l}^{l} \widetilde{\phi}((\pi/l)x) \cos(n(\pi/l)x) d((\pi/l)x) = \frac{1}{l} \int_{-l}^{l} \phi(x) \cos \frac{n\pi x}{l} dx (n = 0, 1, 2, ...)$ and $B_n = \frac{1}{\pi} \int_{-\pi}^{\pi} \widetilde{\phi}(x) \sin nx dx = \frac{1}{\pi} \int_{-l}^{l} \widetilde{\phi}((\pi/l)x) \sin(n(\pi/l)x) d((\pi/l)x) = \frac{1}{l} \int_{-l}^{l} \phi(x) \sin \frac{n\pi x}{l} dx (n = 1, 2, ...)$.
- 9. $a_n = \frac{1}{\pi} (\int_0^{\pi} \phi(x) sinnx dx + \int_{-\pi}^0 \phi(x) sinnx dx) = \frac{1}{\pi} (\int_0^{\pi} \phi(x) sinnx dx + \int_0^{\pi} \phi(x-\pi) sin(n(x-\pi)) d(x-\pi)) = \frac{1}{\pi} (\int_0^{\pi} \phi(x) sinnx dx + \int_0^{\pi} (-1)^n \phi(x) sinnx dx) = 0$ if *n* is odd.
- 10. (a) If ϕ is continuous on (0, l), ϕ_{odd} is continuous on (-l, l) if and only if $\lim_{x \to 0^+} \phi(x) = 0$.
 - (b) If $\phi(x)$ is differentiable on (0, l), ϕ_{odd} is differentiable on (-l, l) if and only if $\lim_{x \to 0^+} \phi'(x)$ exists, since ϕ'_{odd} is an even function, so the only thing to avoid is an infinite discontinuity at x = 0.
 - (c) If ϕ is continuous on (0, l), ϕ_{even} is continuous on (-l, l) if and only if $\lim_{x \to 0^+} \phi(x)$ exists, since the only thing to avoid is an infinite discontinuity at x = 0.
 - (d) If $\phi(x)$ is differentiable on (0, l), ϕ_{even} is differentiable on (-l, l) if and only if $\lim_{x \to 0^+} \phi'(x) = 0$, since ϕ'_{even} is an odd function. \Box
 - Extra. u(0,t) = u(1,t) = 0 tells us we can do odd extension and periodic extension with period 2. Thus define

$$\phi(x) = \begin{cases} \sin^2(\pi x), & x \in [2n, 2n+1] \\ -\sin^2(\pi x), & x \in [2n-1, 2n] \end{cases}$$
$$\psi(x) = \begin{cases} x(1-x), & x \in [2n, 2n+1] \\ x(1+x), & x \in [2n-1, 2n] \end{cases}$$

 $n = 0, \pm 1, \pm 2, \dots$ By d'Alembert's formula, $u(x, t) = \frac{1}{2}[\phi(x+2t) + \phi(x-2t)] + \frac{1}{4} \int_{x-2t}^{x+2t} \psi(s) ds$ solves the problem.

Exercise 5.3

3. Since X(0) = 0, by the odd extension x(-x) = -X(x) for -l < x < 0, then X satisfies $X'' + \lambda X = 0$, X'(-l) = X'(l) = 0. Hence,

$$\lambda = [(n + \frac{1}{2})\pi]^2/l^2, \ X_n(x) = \sin[(n + \frac{1}{2})\pi x/l], \ n = 0, 1, 2, \dots$$

Thus we botain the general formula to this equation

$$u(x,t) = \sum_{n=0}^{\infty} \left[A_n \cos\frac{(n+\frac{1}{2})\pi ct}{l} + B_n \sin\frac{(n+\frac{1}{2})\pi ct}{l}\right] \sin\frac{(n+\frac{1}{2})\pi x}{l}.$$

By the boundry condition, we obtained that B_n are all zero, while $A_n = \frac{2}{l} \int_0^l \sin \frac{(n+\frac{1}{2})\pi x}{l} \cdot x \, dx = (-1)^n \frac{2l}{(n+\frac{1}{2})^2 \pi^2}$.

5(a). Let u(x,t) = X(x)T(t), then

$$-X''(x) = \lambda X(x),$$

 $X(0) = 0, X'(l) = 0.$

By Theorem 3, there is no negative eigenvalue. It is easy to check that 0 is not an eigenvalue. Hence, there are only positive eigenvalues. Let $\lambda = \beta^2$, $\beta > 0$, then we have

$$X(x) = A\cos\beta x + B\sin\beta x.$$

Hence the boundary conditions imply

$$A = 0, \ B\beta \cos \beta l = 0.$$

 $\beta = \frac{(n + \frac{1}{2})\pi}{l}, \ n = 0, 1, 2, ..$

So the eigenfunctions are

$$X_n(x) = \sin \frac{(n + \frac{1}{2})\pi x}{l}, \ n = 0, 1, 2, \dots$$

6. Let $X'(x) = \lambda X(x), \lambda \in \mathbb{C}$, then

$$X(x) = e^{\lambda x}$$

By the boundary condition X(0) = X(1), we have

$$e^{\lambda} = 1$$

Hence,

$$\lambda_n = 2n\pi i, \ X_n(x) = e^{2n\pi x i}, \ n \in \mathbb{Z}.$$

Since, if $m \neq n$,

$$\int_0^1 X_n(x)\overline{X_m(x)}dx = \int_0^1 e^{2(n-m)\pi xi}dx = 0.$$

Therefore, the eigenfunctions are orthogonal on the interval (0, 1).

8. If

$$X_1'(a) - a_a X_1(a) = X_2'(a) - a_a X_2(a) = 0,$$

and

$$X_1'(b) + a_b X_1(b) = X_2'(b) + a_b X_2(b) = 0,$$

then

$$\begin{aligned} (-X_1'X_2 + X_1X_2')|_a^b &= -X_1'(b)X_2(b) + X_1(b)X_2'(b) + X_1'(a)X_2(a) - X_1(a)X_2'(a) \\ &= a_bX_1(b)X_2(b) - X_1(b)a_bX_2(b) + a_aX_1(a)X_2(a) - X_1(a)a_aX_2(a) = 0. \end{aligned}$$

9. For j = 1, 2, suppose that

$$X_j(b) = \alpha X_j(a) + \beta X'_j(a)$$
$$X'_j(b) = \gamma X_j(a) + \delta X'_j(a).$$

Then,

$$\begin{aligned} (X_1'X_2 - X_1X_2')|_a^b &= X_1'(b)X_2(b) - X_1(b)X_2'(b) - X_1'(a)X_2(a) + X_1(a)X_2'(a) \\ &= [\gamma X_1(a) + \delta X_1'(a)][\alpha X_2(a) + \beta X_2'(a)] \\ &- [\alpha X_1(a) + \beta X_1'(a)][\gamma X_2(a) + \delta X_2'(a)] - X_1'(a)X_2(a) + X_1(a)X_2'(a) \\ &= (\alpha \delta - \beta \gamma - 1)X_1'(a)X_2(a) + (1 + \beta \gamma - \alpha \delta)X_1(a)X_2'(a) \\ &= (\alpha \delta - \beta \gamma - 1)(X_1X_2)'|_{x=a}. \end{aligned}$$

Therefore, the boundary conditions are symetric if and only if $\alpha\delta - \beta\gamma = 1$.

10. (a)(By induction)First, it is easy to check that Z_2 is orthogonal to Z_1 . Assume that $Z_1, Z_2, ..., Z_n$ are orthogonal to each other, and, by definition, $Y_{n+1} = X_{n+1} - \sum_{k=1}^{n} (X_{n+1}, Z_k) Z_k$. Thus, by assumption, for l = 1, 2, ..., n,

$$(Z_l, Z_{n+1}) = ((Z_l, X_{n+1}) - \sum_{k=1}^n (X_{n+1}, Z_k)(Z_l, Z_k)) / ||Y_{n+1}|| = ((Z_l, X_{n+1}) - (Z_l, X_{n+1})) / ||Y_{n+1}|| = 0,$$

 $(Z_{n+1}, Z_{n+1}) = 1$. That is $Z_1, Z_2, ..., Z_{n+1}$ are orthogonal to each other. (b)

$$Z_{1} = \frac{\cos x + \cos 2x}{\sqrt{\int_{0}^{\pi} (\cos x + \cos 2x)^{2} dx}} = (\cos x + \cos 2x)/\sqrt{\pi},$$

$$Y_{2} = 3\cos x - 4\cos 2x - Z_{1} \int_{0}^{\pi} (3\cos x - 4\cos 2x)Z_{1} dx = 7(\cos x - \cos 2x)/2,$$

$$Z_{2} = \frac{Y_{2}}{\sqrt{\int_{0}^{\pi} Y_{2}^{2} dx}} = (\cos x - \cos 2x)/\sqrt{\pi}.$$

12. By the divergence theorem,

$$f'g|_{a}^{b} = \int_{a}^{b} (f'(x)g(x))'dx = \int_{a}^{b} f''(x)g(x) + f'(x)g'(x)dx,$$
$$\int_{a}^{b} f''(x)g(x)dx = -\int_{a}^{b} f'(x)g'(x)dx + f'g|_{a}^{b}. \quad \Box$$

13. Substitute f(x) = X(x) = g(x) in the Green's first identity, we have

$$\int_{a}^{b} X''(x)X(x)dx = -\int_{a}^{b} X'^{2}(x)dx + (X'X)|_{a}^{b} \le 0.$$

Since $-X'' = \lambda X$, so

$$-\lambda \int_{a}^{b} X^{2}(x) dx \le 0.$$

Therefore, we get $\lambda \ge 0$ since $X \not\equiv 0$.

Exercise 5.4

1. The partial sum is given by

$$S_n = \frac{1 - (-1)^n x^{2n}}{1 + x^2}.$$

(a) Obviously for any x_0 fixed, $S_n \to \frac{1}{1+x_0^2}$. Thus it converges to $\frac{1}{1+x^2}$ pointwise.

- (b) Let $x_n = 1 \frac{1}{n}$, then $x^{2n} \to e^{-2}$. Thus it does not converge uniformly.
- (c) It will converge to $S(x) = \frac{1}{1+x^2}$ in the L^2 sence since

$$\int_{-1}^{1} |S_n - S|^2 dx = \int_{-1}^{1} \frac{x^{4n}}{(1+x^2)^2} dx$$

$$\leq \int_{-1}^{1} x^{4n} dx$$

$$\leq \frac{2}{4n+1} \to 0 \quad \text{as } n \to \infty. \qquad \Box$$

- 2. This is an easy consequence combined Theorem 2 and Theorem 3 on Page 124 and Theorem 4 on Page 125. □
- 3. (a) For any fixed point x_0 , WLOG, we assume $x_0 < \frac{1}{2}$. Then there is N_0 such that for $n > N_0$,

$$x_0 < \frac{1}{2} - \frac{1}{n},$$

which implies that $f_n(x_0) \equiv 0$. Thus $f_n(x) \to 0$ pointwisely.

- (b) Let $x_n = \frac{1}{2} \frac{1}{n}$, then $f_n(x_n) = -\gamma_n \to -\infty$, which implies that the convergence is not uniform.
- (c) By direct computation, we have

$$\int f_n^2(x)dx = \int_{\frac{1}{2} - \frac{1}{n}}^{\frac{1}{2}} \gamma_n^2 dx + \int_{\frac{1}{2}}^{\frac{1}{2} + \frac{1}{n}} \gamma_n^2 dx = \frac{2\gamma_n^2}{n}.$$

For $\gamma_n = n^{\frac{1}{3}}$,

$$\int f_n^2(x)dx = 2n^{-\frac{1}{3}} \to 0 \quad \text{as } n \to \infty$$

(d) By the computation in (c), for $\gamma_n = n$,

$$\int f_n^2(x)dx = 2n \to \infty \quad \text{as } n \to \infty. \qquad \Box$$

4. For odd n,

$$\int_{\frac{1}{4} - \frac{1}{n^2}}^{\frac{1}{4} + \frac{1}{n^2}} 1^2 dx = \frac{2}{n^2} \to 0.$$

For even n,

$$\int_{\frac{3}{4} - \frac{1}{n^2}}^{\frac{3}{4} + \frac{1}{n^2}} 1^2 dx = \frac{2}{n^2} \to 0.$$

Thus, for any n,

$$||g_n(x)||_{L^2}^2 = \frac{2}{n^2} \to 0 \text{ as } n \to \infty.$$

- 5. (a) We see that $A_0 = \frac{2}{3} \int_1^2 dx = \frac{4}{3}$ and $A_m = \frac{2}{3} \int_2^3 \cos \frac{m\pi x}{3} dx = -\frac{2}{mx} \sin \frac{m\pi}{3}$. So, the first four nonzero terms are $\frac{4}{3}, -\frac{\sqrt{3}}{pi} \cos \frac{\pi x}{3}, -\frac{\sqrt{3}}{2\pi} \cos \frac{2\pi x}{3}$ and $\frac{\sqrt{3}}{4\pi} \cos \frac{4\pi x}{3}$.
 - (b) We can express $\phi(x) = \frac{A_0}{2} + \sum_{n=1}^{\infty} (A_n \cos \frac{n\pi x}{3} + B_n \sin \frac{n\pi x}{3})$. by Theorem 4 of Section 4, since $\phi(x)$ and its derivative is piecewise continuous, so we get the fourier series will converge to f(x) except at x = 1, while the value of this series at x = 1 is $\frac{1}{2}$.
 - (c) By corollary 7, we see that it converge to $\phi(x)$ in L^2 sense.
 - (d) Put x = 0, we see that the sine series vanish, it turns out to be that $\phi(0) = \frac{2}{3} \frac{\sqrt{3}}{\pi} \sum_{1 \le m < \infty, m \ne 3n} \frac{(-1)^{\left\lfloor \frac{m}{3} \right\rfloor}}{m} \cos \frac{m\pi (m + 1)^{\left\lfloor \frac{m}{3} \right\rfloor}}}{m} \cos \frac{m\pi (m + 1)^{\left\lfloor \frac{m}{3} \right\rfloor}}{m} \cos \frac{m\pi (m + 1)^{\left\lfloor \frac{m}{3} \right\rfloor}}}{m} \cos \frac{m\pi (m + 1)^{\left\lfloor \frac{m}{3} \right\rfloor}}{m} \cos \frac{m\pi (m + 1)^{\left\lfloor \frac{m}{3} \right\rfloor}}}{m} \cos \frac{m\pi (m + 1)^{\left\lfloor \frac{m}{3} \right\rfloor}}{m} \cos \frac{m\pi (m + 1)^{\left\lfloor$
- 6. The series is $\cos x = \sum_{n=1}^{\infty} a_n \sin nx$. If n > 1,

$$a_n = \frac{2}{\pi} \int_0^{\pi} \cos x \sin nx \, dx = -\frac{1}{\pi} \left[\frac{\cos(n+1)x}{n+1} + \frac{\cos(n-1)x}{n-1} \right]_0^{\pi} = \frac{2n(1+(-1)^n)}{(n^2-1)\pi}$$

If n = 1, $a_1 = 0$. The sum series is 0 if $x = -\pi, 0, \pi$. By Theorem 4 in Section 4, the sum series converges to $\cos x$ pointwisely in $0 < x < \pi$, and to $-\cos x$ for $-\pi < x < 0$.

$$\sum_{n=1}^{\infty} B_n \sin n\pi x,$$

where B_n satisfies

$$B_n = \int_{-1}^1 \phi(x) \sin n\pi x dx = \frac{2}{n\pi}.$$

(b) By (a), the first three nonzero terms are

$$\frac{2}{\pi}\sin\pi x, \ \frac{1}{\pi}\sin 2\pi x, \ \frac{2}{3\pi}\sin 3\pi x.$$

(c) Since

$$\int_{-1}^{1} |\phi(x)|^2 dx = 2 \int_{0}^{1} (1-x)^2 dx \le 2,$$

it converges in the mean square sense according to Corollary 7.

- (d) Since $\phi(x)$ is continuous on (-1, 1) except at the point x = 0. Therefore, Theorem 4 in Section 4 implies it converges pointwisely on (-1, 1) expect at x = 0.
- (e) Since the series does not converge pointwise, it does not converge uniformly.
- 8. (a) $f(x) = x^3$, $f'(x) = 3x^2$, f''(x) = 6x exist and continuous on [0, l], f(0) = 0, $f(l) = l^3 \neq 0$ and $\int_0^l x^6 dx = l^7/7$ is finite, thus, the Fourier sine series of f(x) converges pointwise on (0, l) and in the mean square sense but not uniformly.

 $(b)f(x) = lx - x^2, f'(x) = l - 2x, f''(x) = -2$ exist and continuous on [0, l], f(0) = f(l) = 0 and $\int_0^l (lx - x^2)^2 dx = l^5/30$ is finite, thus, the Fourier sine series of f(x) converges pointwise, uniformly on [0, l] and in the mean square sense.

 $(c)f(x) = x^{-2}, f'(x) = -2x^{-3}, f''(x) = 6x^{-4}$ exist and continuous on (0, l), do not exist when x = 0 and $\int_0^l x^{-4} dx$ is not finite, thus, the Fourier sine series of f(x) converges pointwise on (0, l) but not in the mean square sense nor uniformly.

Exercise 5.6

1. (a) (Use the method of shifting the data.) Let v(x,t) := u(x,t) - 1, then v solves

$$v_t = v_{xx}, v_x(0,t) = v(1,t) = 0, \text{ and } v(x,0) = x^2 - 1.$$

By the method of seperation of variables, we have

$$v(x,t) = \sum_{n=0}^{\infty} A_n e^{-(n+\frac{1}{2})^2 \pi^2 t} \cos[(n+\frac{1}{2})\pi x],$$

where

$$A_n = (-1)^{n+1} 4(n+\frac{1}{2})^{-3} \pi^{-3}.$$

Hence,

$$u(x,t) = 1 + \sum_{n=0}^{\infty} A_n e^{-(n+\frac{1}{2})^2 \pi^2 t} \cos[(n+\frac{1}{2})\pi x],$$

where A_n is as before.

(b) 1. □

2. In the case j(t) = 0 and $h(t) = e^t$, by (10) and the initial condition $u_n(0) = 0$,

$$u_n(t) = \frac{2n\pi k}{(\lambda_n k + 1)l^2} (e^t - e^{-\lambda_n kt}).$$

Therefore,

$$u(x,t) = \sum_{n=1}^{\infty} \frac{2n\pi k}{(\lambda_n k + 1)l^2} (e^t - e^{-\lambda_n kt}) \sin \frac{n\pi x}{l}. \qquad \Box$$

5. It is easy to check that $\frac{e^t \sin 5x}{1+25c^2}$ solves $v_t t = c^2 v_{rec} + e^t$

$$v_t t = c^2 v_{xx} + e^t \sin 5x$$
, and $v(0,t) = v(\pi,t) = 0$.

Using the method of shifting the data, we have

$$u(x,t) = \frac{e^t \sin 5x}{1 + 25c^2} + \sum_{n=1}^{\infty} (A_n \cos(nct) + B_n \sin(nct)) \sin(nx),$$

where

$$A_n = -\frac{2}{\pi} \int_0^{\pi} \frac{1}{1+25c^2} \sin 5x \sin nx \ dx = \begin{cases} -\frac{1}{1+25c^2} & n=5\\ 5 & \text{otherwise} \end{cases};$$
$$B_n = \frac{2}{nc\pi} \int_0^{\pi} [\sin 3x - \frac{1}{1+25c^2} \sin 5x] \sin nx \ dx$$
$$= \begin{cases} \frac{1}{3c} & n=3\\ -\frac{1}{5c(1+25c^2)} & n=5\\ 0 & \text{otherwise} \end{cases}.$$

So the formula of the solution can be simplified as

$$u(x,t) = \frac{1}{3c}\sin 3ct\sin 3x + \frac{1}{1+25c^2}\left(e^t - \cos 5ct - \frac{1}{5c}\sin 5ct\right)\sin 5x.$$

8. (Expansion Method) Let

$$u(x,t) = \sum_{n=1}^{\infty} u_n(t) \sin \frac{n\pi x}{l},$$
$$\frac{\partial u}{\partial t}(x,t) = \sum_{n=1}^{\infty} v_n(t) \sin \frac{n\pi x}{l},$$
$$\frac{\partial^2 u}{\partial x^2}(x,t) = \sum_{n=1}^{\infty} w_n(t) \sin \frac{n\pi x}{l}.$$

Then

$$\begin{aligned} v_n(t) &= \frac{2}{l} \int_0^l \frac{\partial u}{\partial t} \sin \frac{n\pi x}{l} dx = \frac{du_n}{dt}, \\ w_n(t) &= \frac{2}{l} \int_0^l \frac{\partial^2 u}{\partial x^2} \sin \frac{n\pi x}{l} dx = \frac{du_n}{dt}, \\ &= -\frac{2}{l} \int_0^l (\frac{n\pi}{l})^2 u(x,t) \sin \frac{n\pi x}{l} dx + \frac{2}{l} (u_x \sin \frac{n\pi x}{l} - \frac{n\pi}{l} u \cos \frac{n\pi x}{l}) \Big|_0^l \\ &= -\lambda_n u_n(t) - 2n\pi l^{-2} (-1)^n At, \end{aligned}$$

where $\lambda_n = (n\pi/l)^2$. Here we used the Green's second identity and the boundary conditions. Hence, by the PDE $u_t = k u_{xx}$ and the initial condition u(x, 0) = 0, we get

$$\frac{du_n}{dt} = k[-\lambda_n u_n(t) - 2n\pi l^{-2}(-1)^n At],$$
$$u_n(0) = 0.$$

Hence,

$$u_{n}(t) = (-1)^{n+1} 2n\pi l^{-2} A[\frac{t}{\lambda_{n}} - \frac{1}{\lambda_{n}^{2}k} + \frac{e^{-\lambda_{n}kt}}{\lambda_{n}^{2}k}].$$

Therefore,

$$u(x,t) = \sum_{n=1}^{\infty} (-1)^{n+1} 2n\pi l^{-2} A\left[\frac{t}{\lambda_n} - \frac{1}{\lambda_n^2 k} + \frac{e^{-\lambda_n k t}}{\lambda_n^2 k}\right] \sin \frac{n\pi x}{l},$$

where $\lambda_n = (n\pi/l)^2$.

11. The general solution is $y_n(t) = c_1 y_1(t) + c_2 y_2(t) + Y(t)$, where $y_1(t) = e^{c\sqrt{-\lambda_n}t}$, $y_2(t) = e^{-c\sqrt{-\lambda_n}t}$ are a fundamental set of solutions and $Y(t) = -y_1(t) \int_0^t \frac{y_2(s)g(s)}{W(y_1,y_2)(s)} ds + y_2(t) \int_0^t \frac{y_1(s)g(s)}{W(y_1,y_2)(s)} ds$ (here $W(y_1, y_2)(s) = y_1(s)y_2'(s) - y_1'(s)y_2(s) = -2c\sqrt{\lambda_n} \neq 0$ if $\lambda_n \neq 0$, $g(s) = -2n\pi l^{-2}((-1)^n k(s) - h(s)) + f_n(s)$). The constant c_1 and c_2 are determined by the initial conditions.