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Suggested Solution to Assignment 5

Exercise 5.1

2. (a)

Am = 2

∫ 1

0
x2 sinmπx dx = −2

x2

mπ
cosmπx

∣∣∣1
0

+

∫ 1

0

4x

mπ
cosmπx dx

=
2(−1)m+1

mπ
+

4(−1)m − 4

m3π3
.

(b)

Am = 2

∫ 1

0
x2 cosmπxdx = 2

x2

mπ
sinmπx

∣∣∣1
0
−
∫ 1

0

4x

mπ
sinmπxdx = (−1)m

4

m2π2
. �

4. To find the Fourier series of the function f(x) = | sinx|, we first note that this is an even function so that
it has a cos-series. If we integrate from 0 to π and multiply the result by 2, we can take the function sinx
instead of | sinx| so that

a0 =
2

π

∫ π

0
sinxdx =

4

π
.

an =
2

π

∫ π

0
sinx cosnxdx =

{
4

(1−n2)π
n even

0 n odd
.

Hence, we have

f(x) =
2

π
− 4

π
(
cos 2x

22 − 1
+

cos 4x

42 − 1
+

cos 6x

62 − 1
+ · · · ).

Substituting x = 0 and x = π
2 , we have

∞∑
n=1

1

4n2 − 1
=

1

2
.

∞∑
n=1

(−1)n

4n2 − 1
=

1

2
− π

4
. �

5. (a) From Page.109, we have

x =
∞∑
m=1

(−1)m+1 2l

mπ
sin

mπx

l
.

Integration of both sides gives

x2

2
= c+

∞∑
m=1

(−1)m
2l2

m2π2
cos

mπx

l
.

The constant of the integration is the missing coefficient

c =
A0

2
=

1

l

∫ l

0

x2

2
dx =

l2

6
.

(b) By setting x = 0 gives

0 =
l2

6
+

∞∑
m=1

(−1)m
2l2

m2π2
,

or
π2

12
=

∞∑
m=1

(−1)m+1

m2
. �
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8. The key point in the problem above is to solve the following PDE problem.

ut − uxx = 0, u(x, 0) = φ(x), u(0, t) = u(l, t) = 0,

φ(x) =

{
3
2 , 0 < x < 2

3 ,

3− 3x, 2
3 < x < 1

.

Through a standard procedure of separation variable method, we obtain

u(x, t) =
∑

ane
−n2π2t sinnπx,

where an = 2
∫ 1
0 φ(x) sinnπxdx = 9

n2π2 sin 2πn
3 , so the solution T = u(x, t) + x. �

9. From Section 4.2.7, we see that the general formula to wave equation with Neu- mann boundary condition
is

u(x, t) =
1

2
(A0 +B0t) +

∞∑
n=1

(An cosnct+Bn sinnct) cosnx,

where

φ(x) =
1

2
A0 +

∞∑
n=1

An cosnx, ψ(x) =
1

2
B0 +

∞∑
n=1

ncBn cosnx.

By further calculation, we have B0 = 1, B2 = 1
4c and the other coefficients are all zero. Hence, the solution

is

u(x, t) =
1

2
t+

sin 2ct cos 2x

4c
. �

Exercise 5.2

1. (a)Odd, period= 2π/a;

(b)neither even nor odd nor periodic;

(c)even if m is even, odd if m is odd, and not periodic;

(d)even, not periodic;

(e)even, period= bπ;

(f)odd, not periodic.

2. Suppose α = p/q, where p, q are co-prime to each other. Then is is not difficult to see that S = 2qπ is a
period of the function. Suppose 2qπ = mT , where T is the minimal period. Then

cosx+ cosαx = cos(x+ T ) + cos(αx+ αT ).

Let x = 0, we have the above equality holds iff q/m, p/m are both integers. Therefore, m = 1. Hence, we
finish the problem. �

4. φ(x) = 1
2A0 +

∑∞
n=1(Ancos

nπx
l + Bnsin

nπx
l ) where An = 1

l

∫ l
−l φ(x)cosnπxl dx(n = 0, 1, 2, ...) and Bn =

1
l

∫ l
−l φ(x)sinnπxl dx(n = 1, 2, ...).

(a)φ(x) is an odd function and cosnπxl is an even function, thus, by (5), An = 0.

(b)φ(x) is an even function and sinnπxl is an odd function, thus, by (5), Bn = 0.

5. Let am = 2
l

∫ l
0 φ(x) sin mπx

l . Then we have

φ(x) =

∞∑
m=1

am sin
mπx

l
. �
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7. The full series on (−π, π) is φ̃(x′) = 1
2A0+

∑∞
n=1(Ancosnx

′+Bnsinnx
′ where An = 1

π

∫ π
−π φ̃(x)cosnxdx(n =

0, 1, 2, ...) and Bn = 1
π

∫ π
−π φ̃(x)sinnxdx(n = 1, 2, ...). Set x′ = (π/l)x we obtain φ(x) = φ̃((π/l)x) = 1

2A0+∑∞
n=1(Ancos

nπx
l + Bnsin

nπx
l ) where An = 1

π

∫ π
−π φ̃(x)cosnxdx = 1

π

∫ l
−l φ̃((π/l)x)cos(n(π/l)x)d((π/l)x) =

1
l

∫ l
−l φ(x)cosnπxl dx(n = 0, 1, 2, ...) andBn = 1

π

∫ π
−π φ̃(x)sinnxdx = 1

π

∫ l
−l φ̃((π/l)x)sin(n(π/l)x)d((π/l)x) =

1
l

∫ l
−l φ(x)sinnπxl dx(n = 1, 2, ...).

9. an = 1
π (
∫ π
0 φ(x)sinnxdx+

∫ 0
−π φ(x)sinnxdx)= 1

π (
∫ π
0 φ(x)sinnxdx+

∫ π
0 φ(x− π)sin(n(x− π))d(x− π))=

1
π (
∫ π
0 φ(x)sinnxdx+

∫ π
0 (−1)nφ(x)sinnxdx)= 0 if n is odd.

10. (a) If φ is continuos on (0, l), φodd is continuous on (−l, l) if and only if lim
x→0+

φ(x) = 0.

(b) If φ(x) is differentiable on (0, l), φodd is differentiable on (−l, l) if and only if lim
x→0+

φ′(x) exists, since

φ′odd is an even function, so the only thing to avoid is an infinite discontinuity at x = 0.

(c) If φ is continuos on (0, l), φeven is continuous on (−l, l) if and only if lim
x→0+

φ(x) exists, since the only

thing to avoid is an infinite discontinuity at x = 0.

(d) If φ(x) is differentiable on (0, l), φeven is differentiable on (−l, l) if and only if lim
x→0+

φ′(x) = 0 , since

φ′even is an odd function. �

Extra. u(0, t) = u(1, t) = 0 tells us we can do odd extension and periodic extension with period 2. Thus
define

φ(x) =

{
sin2(πx), x ∈ [2n, 2n+ 1]

− sin2(πx), x ∈ [2n− 1, 2n]

ψ(x) =

{
x(1− x), x ∈ [2n, 2n+ 1]

x(1 + x), x ∈ [2n− 1, 2n]

n = 0,±1,±2, .... By d’Alembert’s formula,u(x, t) = 1
2 [φ(x+ 2t) + φ(x− 2t)] + 1

4

∫ x+2t
x−2t ψ(s)ds solves

the problem.

Exercise 5.3

3. Since X(0) = 0, by the odd extension x(−x) = −X(x) for −l < x < 0, then X satisfies X ′′ + λX = 0 ,
X ′(−l) = X ′(l) = 0. Hence,

λ = [(n+
1

2
)π]2/l2, Xn(x) = sin[(n+

1

2
)πx/l], n = 0, 1, 2, . . .

Thus we botain the general formula to this equation

u(x, t) =

∞∑
n=0

[An cos
(n+ 1

2)πct

l
+Bn sin

(n+ 1
2)πct

l
] sin

(n+ 1
2)πx

l
.

By the boundry condition, we obtained that Bn are all zero, while An = 2
l

∫ l
0 sin

(n+ 1
2
)πx

l · x dx =

(−1)n 2l
(n+ 1

2
)2π2 .

5(a). Let u(x, t) = X(x)T (t), then
−X ′′(x) = λX(x),

X(0) = 0, X ′(l) = 0.

3
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By Theorem 3, there is no negative eigenvalue. It is easy to check that 0 is not an eigenvalue. Hence,
there are only positive eigenvalues.
Let λ = β2, β > 0, then we have

X(x) = A cosβx+B sinβx.

Hence the bounndary condtions imply

A = 0, Bβ cosβl = 0.

β =
(n+ 1

2)π

l
, n = 0, 1, 2, . . .

So the eigenfunctions are

Xn(x) = sin
(n+ 1

2)πx

l
, n = 0, 1, 2, . . . �

6. Let X ′(x) = λX(x), λ ∈ C, then
X(x) = eλx.

By the boundary condition X(0) = X(1), we have

eλ = 1.

Hence,
λn = 2nπi, Xn(x) = e2nπxi, n ∈ Z.

Since, if m 6= n, ∫ 1

0
Xn(x)Xm(x)dx =

∫ 1

0
e2(n−m)πxidx = 0.

Therefore, the eigenfunctions are orthogonal on the interval (0, 1). �

8. If
X ′1(a)− aaX1(a) = X ′2(a)− aaX2(a) = 0,

and
X ′1(b) + abX1(b) = X ′2(b) + abX2(b) = 0,

then

(−X ′1X2 +X1X
′
2)|ba = −X ′1(b)X2(b) +X1(b)X

′
2(b) +X ′1(a)X2(a)−X1(a)X ′2(a)

= abX1(b)X2(b)−X1(b)abX2(b) + aaX1(a)X2(a)−X1(a)aaX2(a) = 0. �

9. For j = 1, 2, suppose that

Xj(b) = αXj(a) + βX ′j(a)

X ′j(b) = γXj(a) + δX ′j(a).

Then,

(X ′1X2 −X1X
′
2)|ba = X ′1(b)X2(b)−X1(b)X

′
2(b)−X ′1(a)X2(a) +X1(a)X ′2(a)

= [γX1(a) + δX ′1(a)][αX2(a) + βX ′2(a)]

− [αX1(a) + βX ′1(a)][γX2(a) + δX ′2(a)]−X ′1(a)X2(a) +X1(a)X ′2(a)

= (αδ − βγ − 1)X ′1(a)X2(a) + (1 + βγ − αδ)X1(a)X ′2(a)

= (αδ − βγ − 1)(X1X2)
′|x=a.

Therefore, the boundary conditions are symetric if and only if αδ − βγ = 1. �

4



MATH 4220 (2016-17) partial diferential equations CUHK

10. (a)(By induction)First, it is easy to check that Z2 is orthogonal to Z1. Assume that Z1, Z2, ..., Zn are
orthogonal to each other, and, by definition, Yn+1 = Xn+1 −

∑n
k=1(Xn+1, Zk)Zk. Thus, by assumption,

for l = 1, 2, ..., n,

(Zl, Zn+1) = ((Zl, Xn+1)−
n∑
k=1

(Xn+1, Zk)(Zl, Zk))/||Yn+1|| = ((Zl, Xn+1)− (Zl, Xn+1))/||Yn+1|| = 0,

(Zn+1, Zn+1) = 1. That is Z1, Z2, ..., Zn+1 are orthogonal to each other.

(b)

Z1 =
cosx+ cos2x√∫ π

0 (cosx+ cos2x)2dx
= (cosx+ cos2x)/

√
π,

Y2 = 3cosx− 4cos2x− Z1

∫ π

0
(3cosx− 4cos2x)Z1dx = 7(cosx− cos2x)/2,

Z2 =
Y2√∫ π
0 Y

2
2 dx

= (cosx− cos2x)/
√
π.

12. By the divergence theorem,

f ′g|ba =

∫ b

a
(f ′(x)g(x))′dx =

∫ b

a
f ′′(x)g(x) + f ′(x)g′(x)dx,

∫ b

a
f ′′(x)g(x)dx = −

∫ b

a
f ′(x)g′(x)dx+ f ′g|ba. �

13. Substitute f(x) = X(x) = g(x) in the Green’s first identity, we have∫ b

a
X ′′(x)X(x)dx = −

∫ b

a
X ′2(x)dx+ (X ′X)|ba ≤ 0.

Since −X ′′ = λX, so

−λ
∫ b

a
X2(x)dx ≤ 0.

Therefore, we get λ ≥ 0 since X 6≡ 0. �

Exercise 5.4

1. The partial sum is given by

Sn =
1− (−1)nx2n

1 + x2
.

(a) Obviously for any x0 fixed, Sn → 1
1+x20

. Thus it converges to 1
1+x2

pointwise.

(b) Let xn = 1− 1
n , then x2n → e−2. Thus it does not converge uniformly.

(c) It will converge to S(x) = 1
1+x2

in the L2 sence since∫ 1

−1
|Sn − S|2dx =

∫ 1

−1

x4n

(1 + x2)2
dx

≤
∫ 1

−1
x4ndx

≤ 2

4n+ 1
→ 0 as n→∞. �
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2. This is an easy consequence combined Theorem 2 and Theorem 3 on Page 124 and Theorem 4 on Page
125. �

3. (a) For any fixed point x0, WLOG, we assume x0 <
1
2 . Then there is N0 such that for n > N0,

x0 <
1

2
− 1

n
,

which implies that fn(x0) ≡ 0. Thus fn(x)→ 0 pointwisely.

(b) Let xn = 1
2 −

1
n , then fn(xn) = −γn → −∞, which implies that the convergence is not uniform.

(c) By direct computation, we have∫
f2n(x)dx =

∫ 1
2

1
2
− 1

n

γ2ndx+

∫ 1
2
+ 1

n

1
2

γ2ndx =
2γ2n
n
.

For γn = n
1
3 , ∫

f2n(x)dx = 2n−
1
3 → 0 as n→∞.

(d) By the computation in (c), for γn = n,∫
f2n(x)dx = 2n→∞ as n→∞. �

4. For odd n, ∫ 1
4
+ 1

n2

1
4
− 1

n2

12dx =
2

n2
→ 0.

For even n, ∫ 3
4
+ 1

n2

3
4
− 1

n2

12dx =
2

n2
→ 0.

Thus, for any n,

‖gn(x)‖2L2 =
2

n2
→ 0 as n→∞. �

5. (a) We see that A0 = 2
3

∫ 2
1 dx = 4

3 and Am = 2
3

∫ 3
2 cos mπx3 dx = − 2

mx sin mπ
3 . So, the first four nonzero

terms are 4
3 , −

√
3
pi cos πx3 , −

√
3

2π cos 2πx
3 and

√
3

4π cos 4πx
3 .

(b) We can express φ(x) = A0
2 +

∑∞
n=1(An cos nπx3 +Bn sin nπx

3 ). by Theorem 4 of Sectiion 4, since φ(x)
and its derivative is piecewise continuous, so we get the fourier series will converge to f(x) except at
x = 1, while the value of this series at x = 1 is 1

2 .

(c) By corollary 7, we see that it converge to φ(x) in L2 sense.

(d) Put x = 0, we see that the sine series vanish, it turns out to be that φ(0) = 2
3−
√
3
π

∑
1≤m<∞,m 6=3n

(−1)[
m
3 ]

m cos mπ03 ,

thus we obtain the sum of thee series is 2π
3
√
3
. �

6. The series is cosx =
∑∞

n=1 an sinnx. If n > 1,

an =
2

π

∫ π

0
cosx sinnxdx = − 1

π
[
cos(n+ 1)x

n+ 1
+

cos(n− 1)x

n− 1
]
∣∣∣π
0

=
2n(1 + (−1)n)

(n2 − 1)π
.

If n = 1, a1 = 0. The sum series is 0 if x = −π, 0, π. By Theorem 4 in Section 4, the sum series converges
to cosx pointwisely in 0 < x < π, and to − cosx for −π < x < 0. �

6
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7. (a) Obviously φ(x) is odd. Thus, its full Fourier series is just the Sine Fourier series, i.e.

∞∑
n=1

Bn sinnπx,

where Bn satisfies

Bn =

∫ 1

−1
φ(x) sinnπxdx =

2

nπ
.

(b) By (a), the first three nonzero terms are

2

π
sinπx,

1

π
sin 2πx,

2

3π
sin 3πx.

(c) Since ∫ 1

−1
|φ(x)|2dx = 2

∫ 1

0
(1− x)2dx ≤ 2,

it cconverges in the mean square sense according to Corollary 7.

(d) Since φ(x) is continuous on (−1, 1) except at the point x = 0. Therefore, Theorem 4 in Section 4
implies it converges pointwisely on (−1, 1) expect at x = 0.

(e) Since the series does not converge pointwise, it does not converge uniformly.

8. (a)f(x) = x3, f ′(x) = 3x2, f ′′(x) = 6x exist and continuous on [0, l], f(0) = 0, f(l) = l3 6= 0 and∫ l
0 x

6dx = l7/7 is finite, thus, the Fourier sine series of f(x) converges pointwise on (0, l) and in the mean
square sense but not uniformly.

(b)f(x) = lx − x2, f ′(x) = l − 2x, f ′′(x) = −2 exist and continuous on [0, l], f(0) = f(l) = 0 and∫ l
0(lx − x2)2dx = l5/30 is finite, thus, the Fourier sine series of f(x) converges pointwise, uniformly on

[0, l] and in the mean square sense.

(c)f(x) = x−2, f ′(x) = −2x−3, f ′′(x) = 6x−4 exist and continuous on (0, l), do not exist when x = 0 and∫ l
0 x
−4dx is not finite, thus, the Fourier sine series of f(x) converges pointwise on (0, l) but not in the

mean square sense nor uniformly.

Exercise 5.6

1. (a) (Use the method of shifting the data.)
Let v(x, t) := u(x, t)− 1, then v solves

vt = vxx, vx(0, t) = v(1, t) = 0, and v(x, 0) = x2 − 1.

By the method of seperation of variables, we have

v(x, t) =
∞∑
n=0

Ane
−(n+ 1

2
)2π2t cos[(n+

1

2
)πx],

where

An = (−1)n+14(n+
1

2
)−3π−3.

Hence,

u(x, t) = 1 +

∞∑
n=0

Ane
−(n+ 1

2
)2π2t cos[(n+

1

2
)πx],

where An is as before.

7
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(b) 1. �

2. In the case j(t) = 0 and h(t) = et, by (10) and the initial condition un(0) = 0,

un(t) =
2nπk

(λnk + 1)l2
(et − e−λnkt).

Therefore,

u(x, t) =

∞∑
n=1

2nπk

(λnk + 1)l2
(et − e−λnkt) sin

nπx

l
. �

5. It is easy to check that
et sin 5x

1 + 25c2
solves

vtt = c2vxx + et sin 5x, and v(0, t) = v(π, t) = 0.

Using the method of shifting the data, we have

u(x, t) =
et sin 5x

1 + 25c2
+

∞∑
n=1

(An cos(nct) +Bn sin(nct)) sin(nx),

where

An = − 2

π

∫ π

0

1

1 + 25c2
sin 5x sinnx dx =

−
1

1 + 25c2
n = 5

5 otherwise
;

Bn =
2

ncπ

∫ π

0
[sin 3x− 1

1 + 25c2
sin 5x] sinnx dx

=


1
3c n = 3

− 1

5c(1 + 25c2)
n = 5

0 otherwise

.

So the formula of the solution can be simplfied as

u(x, t) =
1

3c
sin 3ct sin 3x+

1

1 + 25c2

(
et − cos 5ct− 1

5c
sin 5ct

)
sin 5x. �

8. (Expansion Method) Let

u(x, t) =

∞∑
n=1

un(t) sin
nπx

l
,

∂u

∂t
(x, t) =

∞∑
n=1

vn(t) sin
nπx

l
,

∂2u

∂x2
(x, t) =

∞∑
n=1

wn(t) sin
nπx

l
.

Then

vn(t) =
2

l

∫ l

0

∂u

∂t
sin

nπx

l
dx =

dun
dt

,

wn(t) =
2

l

∫ l

0

∂2u

∂x2
sin

nπx

l
dx =

dun
dt

,

= −2

l

∫ l

0
(
nπ

l
)2u(x, t) sin

nπx

l
dx+

2

l
(ux sin

nπx

l
− nπ

l
u cos

nπx

l
)
∣∣∣l
0

= −λnun(t)− 2nπl−2(−1)nAt,

8
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where λn = (nπ/l)2. Here we used the Green’s second identity and the boundary conditions. Hence, by
the PDE ut = kuxx and the initial condition u(x, 0) = 0, we get

dun
dt

= k[−λnun(t)− 2nπl−2(−1)nAt],

un(0) = 0.

Hence,

un(t) = (−1)n+12nπl−2A[
t

λn
− 1

λ2nk
+
e−λnkt

λ2nk
].

Therefore,

u(x, t) =
∞∑
n=1

(−1)n+12nπl−2A[
t

λn
− 1

λ2nk
+
e−λnkt

λ2nk
] sin

nπx

l
,

where λn = (nπ/l)2.

11. The general solution is yn(t) = c1y1(t) + c2y2(t) + Y (t), where y1(t) = ec
√
−λnt, y2(t) = e−c

√
−λnt are a

fundamental set of solutions and Y (t) = −y1(t)
∫ t
0

y2(s)g(s)
W (y1,y2)(s)

ds+y2(t)
∫ t
0

y1(s)g(s)
W (y1,y2)(s)

ds (here W (y1, y2)(s) =

y1(s)y
′
2(s)−y′1(s)y2(s) = −2c

√
λn 6= 0 if λn 6= 0, g(s) = −2nπl−2((−1)nk(s)−h(s))+fn(s)). The constant

c1 and c2 are determined by the initial conditions.
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