Suggested Solution to Assignment 5

Exercise 5.1

2. (a)

$$
\begin{aligned}
A_{m} & =2 \int_{0}^{1} x^{2} \sin m \pi x d x=-\left.2 \frac{x^{2}}{m \pi} \cos m \pi x\right|_{0} ^{1}+\int_{0}^{1} \frac{4 x}{m \pi} \cos m \pi x d x \\
& =\frac{2(-1)^{m+1}}{m \pi}+\frac{4(-1)^{m}-4}{m^{3} \pi^{3}}
\end{aligned}
$$

(b)

$$
A_{m}=2 \int_{0}^{1} x^{2} \cos m \pi x d x=\left.2 \frac{x^{2}}{m \pi} \sin m \pi x\right|_{0} ^{1}-\int_{0}^{1} \frac{4 x}{m \pi} \sin m \pi x d x=(-1)^{m} \frac{4}{m^{2} \pi^{2}}
$$

4. To find the Fourier series of the function $f(x)=|\sin x|$, we first note that this is an even function so that it has a cos-series. If we integrate from 0 to π and multiply the result by 2 , we can take the function $\sin x$ instead of $|\sin x|$ so that

$$
\begin{gathered}
a_{0}=\frac{2}{\pi} \int_{0}^{\pi} \sin x d x=\frac{4}{\pi} \\
a_{n}=\frac{2}{\pi} \int_{0}^{\pi} \sin x \cos n x d x=\left\{\begin{array}{ll}
\frac{4}{\left(1-n^{2}\right) \pi} & n \text { even } \\
0 & n \text { odd }
\end{array} .\right.
\end{gathered}
$$

Hence, we have

$$
f(x)=\frac{2}{\pi}-\frac{4}{\pi}\left(\frac{\cos 2 x}{2^{2}-1}+\frac{\cos 4 x}{4^{2}-1}+\frac{\cos 6 x}{6^{2}-1}+\cdots\right)
$$

Substituting $x=0$ and $x=\frac{\pi}{2}$, we have

$$
\begin{gathered}
\sum_{n=1}^{\infty} \frac{1}{4 n^{2}-1}=\frac{1}{2} \\
\sum_{n=1}^{\infty} \frac{(-1)^{n}}{4 n^{2}-1}=\frac{1}{2}-\frac{\pi}{4}
\end{gathered}
$$

5. (a) From Page.109, we have

$$
x=\sum_{m=1}^{\infty}(-1)^{m+1} \frac{2 l}{m \pi} \sin \frac{m \pi x}{l}
$$

Integration of both sides gives

$$
\frac{x^{2}}{2}=c+\sum_{m=1}^{\infty}(-1)^{m} \frac{2 l^{2}}{m^{2} \pi^{2}} \cos \frac{m \pi x}{l}
$$

The constant of the integration is the missing coefficient

$$
c=\frac{A_{0}}{2}=\frac{1}{l} \int_{0}^{l} \frac{x^{2}}{2} d x=\frac{l^{2}}{6}
$$

(b) By setting $x=0$ gives

$$
0=\frac{l^{2}}{6}+\sum_{m=1}^{\infty}(-1)^{m} \frac{2 l^{2}}{m^{2} \pi^{2}}
$$

or

$$
\frac{\pi^{2}}{12}=\sum_{m=1}^{\infty} \frac{(-1)^{m+1}}{m^{2}}
$$

8. The key point in the problem above is to solve the following PDE problem.

$$
\begin{gathered}
u_{t}-u_{x x}=0, \quad u(x, 0)=\phi(x), \quad u(0, t)=u(l, t)=0, \\
\phi(x)= \begin{cases}\frac{3}{2}, & 0<x<\frac{2}{3} \\
3-3 x, & \frac{2}{3}<x<1\end{cases}
\end{gathered}
$$

Through a standard procedure of separation variable method, we obtain

$$
u(x, t)=\sum a_{n} e^{-n^{2} \pi^{2} t} \sin n \pi x
$$

where $a_{n}=2 \int_{0}^{1} \phi(x) \sin n \pi x d x=\frac{9}{n^{2} \pi^{2}} \sin \frac{2 \pi n}{3}$, so the solution $T=u(x, t)+x$.
9. From Section 4.2.7, we see that the general formula to wave equation with Neu- mann boundary condition is

$$
u(x, t)=\frac{1}{2}\left(A_{0}+B_{0} t\right)+\sum_{n=1}^{\infty}\left(A_{n} \cos n c t+B_{n} \sin n c t\right) \cos n x
$$

where

$$
\phi(x)=\frac{1}{2} A_{0}+\sum_{n=1}^{\infty} A_{n} \cos n x, \quad \psi(x)=\frac{1}{2} B_{0}+\sum_{n=1}^{\infty} n c B_{n} \cos n x .
$$

By further calculation, we have $B_{0}=1, B_{2}=\frac{1}{4 c}$ and the other coefficients are all zero. Hence, the solution is

$$
u(x, t)=\frac{1}{2} t+\frac{\sin 2 c t \cos 2 x}{4 c}
$$

Exercise 5.2

1. (a)Odd, period= $2 \pi / a$;
(b)neither even nor odd nor periodic;
(c)even if m is even, odd if m is odd, and not periodic;
(d)even, not periodic;
(e)even, period $=b \pi$;
(f)odd, not periodic.
2. Suppose $\alpha=p / q$, where p, q are co-prime to each other. Then is is not difficult to see that $S=2 q \pi$ is a period of the function. Suppose $2 q \pi=m T$, where T is the minimal period. Then

$$
\cos x+\cos \alpha x=\cos (x+T)+\cos (\alpha x+\alpha T) .
$$

Let $x=0$, we have the above equality holds iff $q / m, p / m$ are both integers. Therefore, $m=1$. Hence, we finish the problem.
4. $\phi(x)=\frac{1}{2} A_{0}+\sum_{n=1}^{\infty}\left(A_{n} \cos \frac{n \pi x}{l}+B_{n} \sin \frac{n \pi x}{l}\right)$ where $A_{n}=\frac{1}{l} \int_{-l}^{l} \phi(x) \cos \frac{n \pi x}{l} d x(n=0,1,2, \ldots)$ and $B_{n}=$ $\frac{1}{l} \int_{-l}^{l} \phi(x) \sin \frac{n \pi x}{l} d x(n=1,2, \ldots)$.
(a) $\phi(x)$ is an odd function and $\cos \frac{n \pi x}{l}$ is an even function, thus, by (5), $A_{n}=0$.
(b) $\phi(x)$ is an even function and $\sin \frac{n \pi x}{l}$ is an odd function, thus, by (5), $B_{n}=0$.
5. Let $a_{m}=\frac{2}{l} \int_{0}^{l} \phi(x) \sin \frac{m \pi x}{l}$. Then we have

$$
\phi(x)=\sum_{m=1}^{\infty} a_{m} \sin \frac{m \pi x}{l} .
$$

7. The full series on $(-\pi, \pi)$ is $\widetilde{\phi}\left(x^{\prime}\right)=\frac{1}{2} A_{0}+\sum_{n=1}^{\infty}\left(A_{n} \cos n x^{\prime}+B_{n} \operatorname{sinn} n x^{\prime}\right.$ where $A_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} \widetilde{\phi}(x) \cos n x d x(n=$ $0,1,2, \ldots)$ and $B_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} \widetilde{\phi}(x) \operatorname{sinnxdx}(n=1,2, \ldots)$. Set $x^{\prime}=(\pi / l) x$ we obtain $\phi(x)=\widetilde{\phi}((\pi / l) x)=\frac{1}{2} A_{0}+$ $\sum_{n=1}^{\infty}\left(A_{n} \cos \frac{n \pi x}{l}+B_{n} \sin \frac{n \pi x}{l}\right)$ where $A_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} \widetilde{\phi}(x) \cos n x d x=\frac{1}{\pi} \int_{-l}^{l} \widetilde{\phi}((\pi / l) x) \cos (n(\pi / l) x) d((\pi / l) x)=$ $\frac{1}{l} \int_{-l}^{l} \phi(x) \cos \frac{n \pi x}{l} d x(n=0,1,2, \ldots)$ and $B_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} \widetilde{\phi}(x) \sin n x d x=\frac{1}{\pi} \int_{-l}^{l} \widetilde{\phi}((\pi / l) x) \sin (n(\pi / l) x) d((\pi / l) x)=$ $\frac{1}{l} \int_{-l}^{l} \phi(x) \sin \frac{n \pi x}{l} d x(n=1,2, \ldots)$.
8. $a_{n}=\frac{1}{\pi}\left(\int_{0}^{\pi} \phi(x) \operatorname{sinn} x d x+\int_{-\pi}^{0} \phi(x) \operatorname{sinn} x d x\right)=\frac{1}{\pi}\left(\int_{0}^{\pi} \phi(x) \operatorname{sinn} x d x+\int_{0}^{\pi} \phi(x-\pi) \sin (n(x-\pi)) d(x-\pi)\right)=$ $\frac{1}{\pi}\left(\int_{0}^{\pi} \phi(x) \sin n x d x+\int_{0}^{\pi}(-1)^{n} \phi(x) \sin n x d x\right)=0$ if n is odd.
9. (a) If ϕ is continuos on $(0, l), \phi_{\text {odd }}$ is continuous on $(-l, l)$ if and only if $\lim _{x \rightarrow 0^{+}} \phi(x)=0$.
(b) If $\phi(x)$ is differentiable on $(0, l), \phi_{\text {odd }}$ is differentiable on $(-l, l)$ if and only if $\lim _{x \rightarrow 0^{+}} \phi^{\prime}(x)$ exists, since $\phi_{\text {odd }}^{\prime}$ is an even function, so the only thing to avoid is an infinite discontinuity at $x=0$.
(c) If ϕ is continuos on $(0, l), \phi_{\text {even }}$ is continuous on $(-l, l)$ if and only if $\lim _{x \rightarrow 0^{+}} \phi(x)$ exists, since the only thing to avoid is an infinite discontinuity at $x=0$.
(d) If $\phi(x)$ is differentiable on $(0, l), \phi_{\text {even }}$ is differentiable on $(-l, l)$ if and only if $\lim _{x \rightarrow 0^{+}} \phi^{\prime}(x)=0$, since $\phi_{\text {even }}^{\prime}$ is an odd function.
Extra. $u(0, t)=u(1, t)=0$ tells us we can do odd extension and periodic extension with period 2. Thus define

$$
\begin{aligned}
\phi(x) & = \begin{cases}\sin ^{2}(\pi x), & x \in[2 n, 2 n+1] \\
-\sin ^{2}(\pi x), & x \in[2 n-1,2 n]\end{cases} \\
\psi(x) & = \begin{cases}x(1-x), & x \in[2 n, 2 n+1] \\
x(1+x), & x \in[2 n-1,2 n]\end{cases}
\end{aligned}
$$

$n=0, \pm 1, \pm 2, \ldots$. By d'Alembert's formula, $u(x, t)=\frac{1}{2}[\phi(x+2 t)+\phi(x-2 t)]+\frac{1}{4} \int_{x-2 t}^{x+2 t} \psi(s) d s$ solves the problem.

Exercise 5.3

3. Since $X(0)=0$, by the odd extension $x(-x)=-X(x)$ for $-l<x<0$, then X satisfies $X^{\prime \prime}+\lambda X=0$, $X^{\prime}(-l)=X^{\prime}(l)=0$. Hence,

$$
\lambda=\left[\left(n+\frac{1}{2}\right) \pi\right]^{2} / l^{2}, X_{n}(x)=\sin \left[\left(n+\frac{1}{2}\right) \pi x / l\right], n=0,1,2, \ldots
$$

Thus we botain the general formula to this equation

$$
u(x, t)=\sum_{n=0}^{\infty}\left[A_{n} \cos \frac{\left(n+\frac{1}{2}\right) \pi c t}{l}+B_{n} \sin \frac{\left(n+\frac{1}{2}\right) \pi c t}{l}\right] \sin \frac{\left(n+\frac{1}{2}\right) \pi x}{l}
$$

By the boundry condition, we obtained that B_{n} are all zero, while $A_{n}=\frac{2}{l} \int_{0}^{l} \sin \frac{\left(n+\frac{1}{2}\right) \pi x}{l} \cdot x d x=$ $(-1)^{n} \frac{2 l}{\left(n+\frac{1}{2}\right)^{2} \pi^{2}}$.
$5(\mathrm{a})$. Let $u(x, t)=X(x) T(t)$, then

$$
\begin{gathered}
-X^{\prime \prime}(x)=\lambda X(x) \\
X(0)=0, X^{\prime}(l)=0
\end{gathered}
$$

By Theorem 3, there is no negative eigenvalue. It is easy to check that 0 is not an eigenvalue. Hence, there are only positive eigenvalues.
Let $\lambda=\beta^{2}, \beta>0$, then we have

$$
X(x)=A \cos \beta x+B \sin \beta x
$$

Hence the bounndary condtions imply

$$
\begin{gathered}
A=0, B \beta \cos \beta l=0 \\
\beta=\frac{\left(n+\frac{1}{2}\right) \pi}{l}, n=0,1,2, \ldots
\end{gathered}
$$

So the eigenfunctions are

$$
X_{n}(x)=\sin \frac{\left(n+\frac{1}{2}\right) \pi x}{l}, n=0,1,2, \ldots
$$

6. Let $X^{\prime}(x)=\lambda X(x), \lambda \in \mathbb{C}$, then

$$
X(x)=e^{\lambda x}
$$

By the boundary condition $X(0)=X(1)$, we have

$$
e^{\lambda}=1
$$

Hence,

$$
\lambda_{n}=2 n \pi i, \quad X_{n}(x)=e^{2 n \pi x i}, n \in \mathbb{Z}
$$

Since, if $m \neq n$,

$$
\int_{0}^{1} X_{n}(x) \overline{X_{m}(x)} d x=\int_{0}^{1} e^{2(n-m) \pi x i} d x=0
$$

Therefore, the eigenfunctions are orthogonal on the interval $(0,1)$.
8. If

$$
X_{1}^{\prime}(a)-a_{a} X_{1}(a)=X_{2}^{\prime}(a)-a_{a} X_{2}(a)=0
$$

and

$$
X_{1}^{\prime}(b)+a_{b} X_{1}(b)=X_{2}^{\prime}(b)+a_{b} X_{2}(b)=0
$$

then

$$
\begin{aligned}
\left.\left(-X_{1}^{\prime} X_{2}+X_{1} X_{2}^{\prime}\right)\right|_{a} ^{b} & =-X_{1}^{\prime}(b) X_{2}(b)+X_{1}(b) X_{2}^{\prime}(b)+X_{1}^{\prime}(a) X_{2}(a)-X_{1}(a) X_{2}^{\prime}(a) \\
& =a_{b} X_{1}(b) X_{2}(b)-X_{1}(b) a_{b} X_{2}(b)+a_{a} X_{1}(a) X_{2}(a)-X_{1}(a) a_{a} X_{2}(a)=0
\end{aligned}
$$

9. For $j=1,2$, suppose that

$$
\begin{aligned}
& X_{j}(b)=\alpha X_{j}(a)+\beta X_{j}^{\prime}(a) \\
& X_{j}^{\prime}(b)=\gamma X_{j}(a)+\delta X_{j}^{\prime}(a)
\end{aligned}
$$

Then,

$$
\begin{aligned}
\left.\left(X_{1}^{\prime} X_{2}-X_{1} X_{2}^{\prime}\right)\right|_{a} ^{b} & =X_{1}^{\prime}(b) X_{2}(b)-X_{1}(b) X_{2}^{\prime}(b)-X_{1}^{\prime}(a) X_{2}(a)+X_{1}(a) X_{2}^{\prime}(a) \\
& =\left[\gamma X_{1}(a)+\delta X_{1}^{\prime}(a)\right]\left[\alpha X_{2}(a)+\beta X_{2}^{\prime}(a)\right] \\
& -\left[\alpha X_{1}(a)+\beta X_{1}^{\prime}(a)\right]\left[\gamma X_{2}(a)+\delta X_{2}^{\prime}(a)\right]-X_{1}^{\prime}(a) X_{2}(a)+X_{1}(a) X_{2}^{\prime}(a) \\
& =(\alpha \delta-\beta \gamma-1) X_{1}^{\prime}(a) X_{2}(a)+(1+\beta \gamma-\alpha \delta) X_{1}(a) X_{2}^{\prime}(a) \\
& =\left.(\alpha \delta-\beta \gamma-1)\left(X_{1} X_{2}\right)^{\prime}\right|_{x=a}
\end{aligned}
$$

Therefore, the boundary conditions are symetric if and only if $\alpha \delta-\beta \gamma=1$.
10. (a)(By induction)First, it is easy to check that Z_{2} is orthogonal to Z_{1}. Assume that $Z_{1}, Z_{2}, \ldots, Z_{n}$ are orthogonal to each other, and, by definition, $Y_{n+1}=X_{n+1}-\sum_{k=1}^{n}\left(X_{n+1}, Z_{k}\right) Z_{k}$. Thus, by assumption, for $l=1,2, \ldots, n$,

$$
\left(Z_{l}, Z_{n+1}\right)=\left(\left(Z_{l}, X_{n+1}\right)-\sum_{k=1}^{n}\left(X_{n+1}, Z_{k}\right)\left(Z_{l}, Z_{k}\right)\right) /\left\|Y_{n+1}\right\|=\left(\left(Z_{l}, X_{n+1}\right)-\left(Z_{l}, X_{n+1}\right)\right) /\left\|Y_{n+1}\right\|=0
$$

$\left(Z_{n+1}, Z_{n+1}\right)=1$. That is $Z_{1}, Z_{2}, \ldots, Z_{n+1}$ are orthogonal to each other.
(b)

$$
\begin{gathered}
Z_{1}=\frac{\cos x+\cos 2 x}{\sqrt{\int_{0}^{\pi}(\cos x+\cos 2 x)^{2} d x}}=(\cos x+\cos 2 x) / \sqrt{\pi} \\
Y_{2}=3 \cos x-4 \cos 2 x-Z_{1} \int_{0}^{\pi}(3 \cos x-4 \cos 2 x) Z_{1} d x=7(\cos x-\cos 2 x) / 2 \\
Z_{2}=\frac{Y_{2}}{\sqrt{\int_{0}^{\pi} Y_{2}^{2} d x}}=(\cos x-\cos 2 x) / \sqrt{\pi}
\end{gathered}
$$

12. By the divergence theorem,

$$
\begin{gathered}
\left.f^{\prime} g\right|_{a} ^{b}=\int_{a}^{b}\left(f^{\prime}(x) g(x)\right)^{\prime} d x=\int_{a}^{b} f^{\prime \prime}(x) g(x)+f^{\prime}(x) g^{\prime}(x) d x \\
\int_{a}^{b} f^{\prime \prime}(x) g(x) d x=-\int_{a}^{b} f^{\prime}(x) g^{\prime}(x) d x+\left.f^{\prime} g\right|_{a} ^{b}
\end{gathered}
$$

13. Substitute $f(x)=X(x)=g(x)$ in the Green's first identity, we have

$$
\int_{a}^{b} X^{\prime \prime}(x) X(x) d x=-\int_{a}^{b} X^{\prime 2}(x) d x+\left.\left(X^{\prime} X\right)\right|_{a} ^{b} \leq 0
$$

Since $-X^{\prime \prime}=\lambda X$, so

$$
-\lambda \int_{a}^{b} X^{2}(x) d x \leq 0
$$

Therefore, we get $\lambda \geq 0$ since $X \not \equiv 0$.

Exercise 5.4

1. The partial sum is given by

$$
S_{n}=\frac{1-(-1)^{n} x^{2 n}}{1+x^{2}}
$$

(a) Obviously for any x_{0} fixed, $S_{n} \rightarrow \frac{1}{1+x_{0}^{2}}$. Thus it converges to $\frac{1}{1+x^{2}}$ pointwise.
(b) Let $x_{n}=1-\frac{1}{n}$, then $x^{2 n} \rightarrow e^{-2}$. Thus it does not converge uniformly.
(c) It will converge to $S(x)=\frac{1}{1+x^{2}}$ in the L^{2} sence since

$$
\begin{aligned}
\int_{-1}^{1}\left|S_{n}-S\right|^{2} d x & =\int_{-1}^{1} \frac{x^{4 n}}{\left(1+x^{2}\right)^{2}} d x \\
& \leq \int_{-1}^{1} x^{4 n} d x \\
& \leq \frac{2}{4 n+1} \rightarrow 0 \quad \text { as } n \rightarrow \infty .
\end{aligned}
$$

2. This is an easy consequence combined Theorem 2 and Theorem 3 on Page 124 and Theorem 4 on Page 125.
3. (a) For any fixed point x_{0}, WLOG, we assume $x_{0}<\frac{1}{2}$. Then there is N_{0} such that for $n>N_{0}$,

$$
x_{0}<\frac{1}{2}-\frac{1}{n},
$$

which implies that $f_{n}\left(x_{0}\right) \equiv 0$. Thus $f_{n}(x) \rightarrow 0$ pointwisely.
(b) Let $x_{n}=\frac{1}{2}-\frac{1}{n}$, then $f_{n}\left(x_{n}\right)=-\gamma_{n} \rightarrow-\infty$, which implies that the convergence is not uniform.
(c) By direct computation, we have

$$
\int f_{n}^{2}(x) d x=\int_{\frac{1}{2}-\frac{1}{n}}^{\frac{1}{2}} \gamma_{n}^{2} d x+\int_{\frac{1}{2}}^{\frac{1}{2}+\frac{1}{n}} \gamma_{n}^{2} d x=\frac{2 \gamma_{n}^{2}}{n} .
$$

For $\gamma_{n}=n^{\frac{1}{3}}$,

$$
\int f_{n}^{2}(x) d x=2 n^{-\frac{1}{3}} \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

(d) By the computation in (c), for $\gamma_{n}=n$,

$$
\int f_{n}^{2}(x) d x=2 n \rightarrow \infty \quad \text { as } n \rightarrow \infty
$$

4. For odd n,

$$
\int_{\frac{1}{4}-\frac{1}{n^{2}}}^{\frac{1}{4}+\frac{1}{n^{2}}} 1^{2} d x=\frac{2}{n^{2}} \rightarrow 0
$$

For even n,

$$
\int_{\frac{3}{4}-\frac{1}{n^{2}}}^{\frac{3}{4}+\frac{1}{n^{2}}} 1^{2} d x=\frac{2}{n^{2}} \rightarrow 0
$$

Thus, for any n,

$$
\left\|g_{n}(x)\right\|_{L^{2}}^{2}=\frac{2}{n^{2}} \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty
$$

5. (a) We see that $A_{0}=\frac{2}{3} \int_{1}^{2} d x=\frac{4}{3}$ and $A_{m}=\frac{2}{3} \int_{2}^{3} \cos \frac{m \pi x}{3} d x=-\frac{2}{m x} \sin \frac{m \pi}{3}$. So, the first four nonzero terms are $\frac{4}{3},-\frac{\sqrt{3}}{p i} \cos \frac{\pi x}{3},-\frac{\sqrt{3}}{2 \pi} \cos \frac{2 \pi x}{3}$ and $\frac{\sqrt{3}}{4 \pi} \cos \frac{4 \pi x}{3}$.
(b) We can express $\phi(x)=\frac{A_{0}}{2}+\sum_{n=1}^{\infty}\left(A_{n} \cos \frac{n \pi x}{3}+B_{n} \sin \frac{n \pi x}{3}\right)$. by Theorem 4 of Sectiion 4, since $\phi(x)$ and its derivative is piecewise continuous, so we get the fourier series will converge to $f(x)$ except at $x=1$, while the value of this series at $x=1$ is $\frac{1}{2}$.
(c) By corollary 7, we see that it converge to $\phi(x)$ in L^{2} sense.
(d) Put $x=0$, we see that the sine series vanish, it turns out to be that $\phi(0)=\frac{2}{3}-\frac{\sqrt{3}}{\pi} \sum_{1 \leq m<\infty, m \neq 3 n} \frac{(-1)^{\left[\frac{m}{3}\right]}}{m} \cos \frac{m \pi]}{3}$ thus we obtain the sum of thee series is $\frac{2 \pi}{3 \sqrt{3}}$.
6. The series is $\cos x=\sum_{n=1}^{\infty} a_{n} \sin n x$. If $n>1$,

$$
a_{n}=\frac{2}{\pi} \int_{0}^{\pi} \cos x \sin n x d x=-\left.\frac{1}{\pi}\left[\frac{\cos (n+1) x}{n+1}+\frac{\cos (n-1) x}{n-1}\right]\right|_{0} ^{\pi}=\frac{2 n\left(1+(-1)^{n}\right)}{\left(n^{2}-1\right) \pi} .
$$

If $n=1, a_{1}=0$. The sum series is 0 if $x=-\pi, 0, \pi$. By Theorem 4 in Section 4, the sum series converges to $\cos x$ pointwisely in $0<x<\pi$, and to $-\cos x$ for $-\pi<x<0$.
7. (a) Obviously $\phi(x)$ is odd. Thus, its full Fourier series is just the Sine Fourier series, i.e.

$$
\sum_{n=1}^{\infty} B_{n} \sin n \pi x
$$

where B_{n} satisfies

$$
B_{n}=\int_{-1}^{1} \phi(x) \sin n \pi x d x=\frac{2}{n \pi} .
$$

(b) By (a), the first three nonzero terms are

$$
\frac{2}{\pi} \sin \pi x, \frac{1}{\pi} \sin 2 \pi x, \frac{2}{3 \pi} \sin 3 \pi x
$$

(c) Since

$$
\int_{-1}^{1}|\phi(x)|^{2} d x=2 \int_{0}^{1}(1-x)^{2} d x \leq 2
$$

it cconverges in the mean square sense according to Corollary 7.
(d) Since $\phi(x)$ is continuous on $(-1,1)$ except at the point $x=0$. Therefore, Theorem 4 in Section 4 implies it converges pointwisely on $(-1,1)$ expect at $x=0$.
(e) Since the series does not converge pointwise, it does not converge uniformly.
8. (a) $f(x)=x^{3}, f^{\prime}(x)=3 x^{2}, f^{\prime \prime}(x)=6 x$ exist and continuous on $[0, l], f(0)=0, f(l)=l^{3} \neq 0$ and $\int_{0}^{l} x^{6} d x=l^{7} / 7$ is finite, thus, the Fourier sine series of $f(x)$ converges pointwise on $(0, l)$ and in the mean square sense but not uniformly.
(b) $f(x)=l x-x^{2}, f^{\prime}(x)=l-2 x, f^{\prime \prime}(x)=-2$ exist and continuous on $[0, l], f(0)=f(l)=0$ and $\int_{0}^{l}\left(l x-x^{2}\right)^{2} d x=l^{5} / 30$ is finite, thus, the Fourier sine series of $f(x)$ converges pointwise, uniformly on $[0, l]$ and in the mean square sense.
(c) $f(x)=x^{-2}, f^{\prime}(x)=-2 x^{-3}, f^{\prime \prime}(x)=6 x^{-4}$ exist and continuous on ($0, l$), do not exist when $x=0$ and $\int_{0}^{l} x^{-4} d x$ is not finite, thus, the Fourier sine series of $f(x)$ converges pointwise on $(0, l)$ but not in the mean square sense nor uniformly.

Exercise 5.6

1. (a) (Use the method of shifting the data.)

Let $v(x, t):=u(x, t)-1$, then v solves

$$
v_{t}=v_{x x}, v_{x}(0, t)=v(1, t)=0, \text { and } v(x, 0)=x^{2}-1 .
$$

By the method of seperation of variables, we have

$$
v(x, t)=\sum_{n=0}^{\infty} A_{n} e^{-\left(n+\frac{1}{2}\right)^{2} \pi^{2} t} \cos \left[\left(n+\frac{1}{2}\right) \pi x\right],
$$

where

$$
A_{n}=(-1)^{n+1} 4\left(n+\frac{1}{2}\right)^{-3} \pi^{-3}
$$

Hence,

$$
u(x, t)=1+\sum_{n=0}^{\infty} A_{n} e^{-\left(n+\frac{1}{2}\right)^{2} \pi^{2} t} \cos \left[\left(n+\frac{1}{2}\right) \pi x\right]
$$

where A_{n} is as before.
(b) 1 .
2. In the case $j(t)=0$ and $h(t)=e^{t}$, by (10) and the initial condition $u_{n}(0)=0$,

$$
u_{n}(t)=\frac{2 n \pi k}{\left(\lambda_{n} k+1\right) l^{2}}\left(e^{t}-e^{-\lambda_{n} k t}\right)
$$

Therefore,

$$
u(x, t)=\sum_{n=1}^{\infty} \frac{2 n \pi k}{\left(\lambda_{n} k+1\right) l^{2}}\left(e^{t}-e^{-\lambda_{n} k t}\right) \sin \frac{n \pi x}{l} .
$$

5. It is easy to check that $\frac{e^{t} \sin 5 x}{1+25 c^{2}}$ solves

$$
v_{t} t=c^{2} v_{x x}+e^{t} \sin 5 x, \quad \text { and } \quad v(0, t)=v(\pi, t)=0
$$

Using the method of shifting the data, we have

$$
u(x, t)=\frac{e^{t} \sin 5 x}{1+25 c^{2}}+\sum_{n=1}^{\infty}\left(A_{n} \cos (n c t)+B_{n} \sin (n c t)\right) \sin (n x)
$$

where

$$
\begin{aligned}
A_{n} & =-\frac{2}{\pi} \int_{0}^{\pi} \frac{1}{1+25 c^{2}} \sin 5 x \sin n x d x= \begin{cases}-\frac{1}{1+25 c^{2}} & n=5 \\
5 & \text { otherwise }\end{cases} \\
B_{n} & =\frac{2}{n c \pi} \int_{0}^{\pi}\left[\sin 3 x-\frac{1}{1+25 c^{2}} \sin 5 x\right] \sin n x d x \\
& = \begin{cases}\frac{1}{3 c} & n=3 \\
-\frac{1}{5 c\left(1+25 c^{2}\right)} & n=5 \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

So the formula of the solution can be simplfied as

$$
u(x, t)=\frac{1}{3 c} \sin 3 c t \sin 3 x+\frac{1}{1+25 c^{2}}\left(e^{t}-\cos 5 c t-\frac{1}{5 c} \sin 5 c t\right) \sin 5 x .
$$

8. (Expansion Method) Let

$$
\begin{aligned}
u(x, t) & =\sum_{n=1}^{\infty} u_{n}(t) \sin \frac{n \pi x}{l} \\
\frac{\partial u}{\partial t}(x, t) & =\sum_{n=1}^{\infty} v_{n}(t) \sin \frac{n \pi x}{l} \\
\frac{\partial^{2} u}{\partial x^{2}}(x, t) & =\sum_{n=1}^{\infty} w_{n}(t) \sin \frac{n \pi x}{l} .
\end{aligned}
$$

Then

$$
\begin{aligned}
v_{n}(t) & =\frac{2}{l} \int_{0}^{l} \frac{\partial u}{\partial t} \sin \frac{n \pi x}{l} d x=\frac{d u_{n}}{d t} \\
w_{n}(t) & =\frac{2}{l} \int_{0}^{l} \frac{\partial^{2} u}{\partial x^{2}} \sin \frac{n \pi x}{l} d x=\frac{d u_{n}}{d t} \\
& =-\frac{2}{l} \int_{0}^{l}\left(\frac{n \pi}{l}\right)^{2} u(x, t) \sin \frac{n \pi x}{l} d x+\left.\frac{2}{l}\left(u_{x} \sin \frac{n \pi x}{l}-\frac{n \pi}{l} u \cos \frac{n \pi x}{l}\right)\right|_{0} ^{l} \\
& =-\lambda_{n} u_{n}(t)-2 n \pi l^{-2}(-1)^{n} A t
\end{aligned}
$$

where $\lambda_{n}=(n \pi / l)^{2}$. Here we used the Green's second identity and the boundary conditions. Hence, by the PDE $u_{t}=k u_{x x}$ and the initial condition $u(x, 0)=0$, we get

$$
\begin{gathered}
\frac{d u_{n}}{d t}=k\left[-\lambda_{n} u_{n}(t)-2 n \pi l^{-2}(-1)^{n} A t\right], \\
u_{n}(0)=0 .
\end{gathered}
$$

Hence,

$$
u_{n}(t)=(-1)^{n+1} 2 n \pi l^{-2} A\left[\frac{t}{\lambda_{n}}-\frac{1}{\lambda_{n}^{2} k}+\frac{e^{-\lambda_{n} k t}}{\lambda_{n}^{2} k}\right] .
$$

Therefore,

$$
u(x, t)=\sum_{n=1}^{\infty}(-1)^{n+1} 2 n \pi l^{-2} A\left[\frac{t}{\lambda_{n}}-\frac{1}{\lambda_{n}^{2} k}+\frac{e^{-\lambda_{n} k t}}{\lambda_{n}^{2} k}\right] \sin \frac{n \pi x}{l},
$$

where $\lambda_{n}=(n \pi / l)^{2}$.
11. The general solution is $y_{n}(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)+Y(t)$, where $y_{1}(t)=e^{c \sqrt{-\lambda_{n}} t}, y_{2}(t)=e^{-c \sqrt{-\lambda_{n}} t}$ are a fundamental set of solutions and $Y(t)=-y_{1}(t) \int_{0}^{t} \frac{y_{2}(s) g(s)}{W\left(y_{1}, y_{2}\right)(s)} d s+y_{2}(t) \int_{0}^{t} \frac{y_{1}(s) g(s)}{W\left(y_{1}, y_{2}\right)(s)} d s$ (here $W\left(y_{1}, y_{2}\right)(s)=$ $y_{1}(s) y_{2}^{\prime}(s)-y_{1}^{\prime}(s) y_{2}(s)=-2 c \sqrt{\lambda_{n}} \neq 0$ if $\left.\lambda_{n} \neq 0, g(s)=-2 n \pi l^{-2}\left((-1)^{n} k(s)-h(s)\right)+f_{n}(s)\right)$. The constant c_{1} and c_{2} are determined by the initial conditions.

