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Suggested Solution to Assignment 3

Exercise 3.1

2. Let v(x, t) = u(x, t)− 1. Then v(x, t) will satisfy

vt = kvxx, v(x, 0) = −1, v(0, t) = 0.

Hence,

v(x, t) = − 1√
4πkt

∫ ∞
0

[e−
(x−y)2

4kt − e−
(x+y)2

4kt ]dy

= −E rf(
x√
4kt

).

u(x, t) = v(x, t) + 1 = 1− E rf(
x√
4kt

). �

3. By the method of even reflection, we can translate the original problem for the half-line to the problem
for the whole line and then using the formula for the latter to obtain

w(x, t) =
1√

4πkt

∫ ∞
0

[e−(x−y)2/4kt + e−(x+y)2/4kt]φ(y)dy.

For the details, please see your textbook. �

4. (a) With the rule for differentiation under an integral sign and the property of source function, v(x, t)
satisfies

vt = kvxx, v(x, 0) = f(x).

(b) By (a), w(x, t) satisfies
wt = kwxx, w(x, 0) = f ′(x)− 2f(x).

(c) By the definition of f ,

f ′(x)− 2f(x) =

{
1− 2x, x > 0;

−1− 2x, x < 0.

f ′(−x)− 2f(−x) =

{
−1 + 2x, x > 0;

1 + 2x, x < 0.

= −[f ′(x)− 2f(x)].

Hence, f ′(x)− 2f(x) is an odd function.

(d) Since w(x, 0) is an odd function, using the conclusion in Exercise 2.4.11, w is an odd function of x.

(e) By (a), v(x, t) satisfies DE and IC. By (d), v(x, t) satisfies BC. Thus we have proved that v(x, t)
satisfies (1) for x > 0. Hence, using the assumption for the uniqueness, the solution of (1) is given
by

u(x, t) =
1√

4πkt

∫ ∞
−∞

e−(x−y)2/4ktf(y)dy,

where

f(y) =

{
y, y > 0;

y + 1, y < 0.
�
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5. (a)Let f(x) = x for x > 0,= x+2/h for x < 0, v(x) be the functions in Exercise 4 and define w = vx−hv,
then wt = kwxx and w(x, 0) = f ′(x)− hf(x). By the definition of f(x), we can know that f ′(x)− hf(x)
is an odd function. Thus, w is an odd function. Using the same argument in Exercise 4(e), we can obtain
the solution.

(b)Let f(x) = φ(x) for x > 0,= F (x) for x < 0 (where F (x) need to be determined), v(x) be the functions
in Exercise 4 and define w = vx − hv, then wt = kwxx and w(x, 0) = f ′(x)− hf(x). By the definition of
f(x), in order that f ′(x)−hf(x) is an odd function, we have to solve F ′(x)−hF (x) = −φ′(−x) +hφ(−x)
for x < 0. Solving the ODE, we obtain F (x) = (F (−1) + φ(1))eh(1+x) − φ(−x)− 2

∫ 1
−x e

h(x+y)φ′(y)dy for
x < 0. Thus, for F (x) defined as above, w is an odd function. Using the same argument in Exercise 4(e),
we can obtain the solution.

Exercise 3.2

1. By the method of even extension, we have

v(x, t) =
1

2
[φeven(x+ ct) + φeven(x− ct)] +

1

2c

∫ x+ct

x−ct
ψeven(y)dy

=

{
1
2 [φ(x+ ct) + φ(x− ct)] + 1

2c

∫ x+ct
x−ct ψ(y)dy, x ≥ ct;

1
2 [φ(x+ ct) + φ(−x+ ct)] + 1

2c [
∫ x+ct

0 ψ(y)dy +
∫ −x+ct

0 ψ(y)dy], 0 < x < ct.

It is similar for t < 0.

2. We can do this problem by even extension, then we obtain the solution to this problem u(x, t) =
1
2c

∫ x+ct
x−ct ψext(s)ds, where ψext(s) = V for a < s < 2a, −2a < s < −a, and zero otherwise. Substi-

tute t = 0, a/c, 3a/2c, 2a/c, 3a/c into this formula and we omit it. �

3. If the string is fixed at the end x = 0, then we have the homogeneous Dirichlet condition u(0, t) = 0.
Therefore the vibrations u(x, t) of the string for t > 0 is given the odd reflection formula with initial date
f(x) and cf ′(x), that is,

u(x, t) =

{
f(x+ ct) x ≥ ct
f(x+ ct)− f(ct− x) 0 < x < ct.

.

For details see the formulas (1)-(3) in section 3.2 of the book. �

5. Using the odd reflection method or formulas(2) and (3), we have

u(x, t) =

{
1, x > 2|t|;
0, x < 2|t|.

Hence the singularity is on the lines x = 2|t|. �

6. Since ut(0, t) + aux(0, t) = 0, we can consider the function w(x, t) defined on the whole line

w(x, t) =


ut(x, t) + aux(x, t) x > 0;

0, x = 0;

−ut(−x, t)− aux(−x, t), t < 0.

Here, ut(0, t) + aux(0, t) = 0 enables w(x, t) is continuous and differentiable around x = 0. Since w(x, t)
is a linear combination of derivatives of u(x, t), it also satisfies the wave equation, that is,

wtt = c2wxx.
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By direct calculation,

w(x, 0) = φ(x) =


V, x > 0;

0, x = 0;

−V, x < 0.

wt(x, 0) = utt(x, 0) + auxt(x, 0) = c2uxx(x, 0) + auxt(x, 0)

= c2∂2
xx(0) + a∂x(V ) = 0.

Then the d’Alembert’s formula implies

w(x, t) =
1

2
[φ(x+ ct) + φ(x− ct)] =



V, x > ct,

V/2, x = ct,

0, −ct < x < ct,

−V/2 x = −ct,
−V x < −ct.

Let ϕ(s) = u(x + as, t + s), and then ϕ′(s) = ut + aux = w(x + as, t + s), ϕ(−t) = u(x − at, 0) = 0 and
ϕ(0) = u(x, t). Hence,

u(x, t) =

∫ 0

−t
w(x+ as, t+ s)ds.

Denote A = {(x1, t1); 0 ≤ t1 ≤ t} = {(x0, t0);x0 = ct0, 0 ≤ t0 ≤ t} ∩ {(x0, t0);x− x0 = a(t− t0), 0 ≤ t0 ≤
t}(i.e. (x1, t1) is the point where the line x0 = ct0 intersects the line x− x0 = a(t− t0) when 0 ≤ t0 ≤ t)
and B = {(x2, t2); 0 ≤ t1 ≤ t} = {(x0, t0);x0 = −ct0, 0 ≤ t0 ≤ t}∩{(x0, t0);x−x0 = a(t− t0), 0 ≤ t0 ≤ t}.
Hence, when x ≥ at, A = B = ∅ and

u(x, t) =

∫ 0

−t
V ds = V t;

when ct ≤ x ≤ at, t1 =
at− x
a− c

, t2 =
at− x
a+ c

and

u(x, t) =

∫ 0

t1−t
V ds+

∫ t2−t

−t
−V ds = V

x− ct
a− c

− V at− x
a+ c

= V
2ax− (a2 + c2)t

a2 − c2
;

when 0 ≤ x ≤ ct, A = ∅, t2 =
at− x
a+ c

and

u(x, t) =

∫ t2−t

−t
−V ds = −V at− x

a+ c
. �

8. In the diamond-shaped region (0, 0), we have ct < x < l − ct, 0 < t < l/(2c) and v(x, t) = 1/2φ(x+ ct) +
1/2φ(x − ct) + 1/(2c)

∫ x+ct
x−ct ψ(s)ds. In the diamond-shaped region (m,m), m ≥ 1, we have ct − ml <

x < ct − (m − 1)l, ml − ct < x < (m + 1)l − ct, (m − 1/2)l/c < t < (m + 1/2)l/c, and v(x, t) =

1/2φ(x+ ct−ml) + 1/2φ(x− ct+ml) + 1/(2c)[
∫ l
x−ct+ml ψ(s)ds+

∫ x+ct−ml
0 ψ(s)ds+

∫ 0
−l−ψ(−s)ds] if m is

even, = −1/2φ(−x−ct+(m+1)l)−1/2φ(−x+ct−(m−1)l)+1/(2c)[
∫ l

0 ψ(s)ds+
∫ 0
x−ct+(m−1)l−ψ(−s)ds+∫ x+ct−(m+1)l

−l −ψ(−s)ds] if m is odd. In the diamond-shaped region (m,m− 1), m ≥ 1, we have 0 < x <
ct − (m − 1)l, x < ml − ct, (m − 1)l/c < t < ml/c and v(x, t) = −1/2φ(−x − ct + ml) + 1/2φ(x − ct +

ml) + 1/(2c)[
∫ l
x−ct+ml ψ(s)ds+

∫ x+ct−ml
−l −ψ(−s)ds] if m is even, = 1/2φ(x+ ct− (m− 1)l)− 1/2φ(−x+
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ct− (m− 1)l) + 1/(2c)[
∫ x+ct−(m−1)l

0 ψ(s)ds+
∫ 0
x−ct+(m−1)l−ψ(−s)ds] if m is odd. In the diamond-shaped

region (m− 1,m), m ≥ 1, we have ct− (m− 1)l < x < l, x > ml− ct, (m− 1)l/c < t < ml/c and v(x, t) =

1/2φ(x+ct−ml)−1/2φ(−x+ct−(m−2)l)+1/(2c)[
∫ x+ct−ml

0 ψ(s)ds+
∫ 0
x−ct+(m−2)l−ψ(−s)ds] if m is even,

= −1/2φ(−x−ct+(m+1)l)+1/2φ(x−ct+(m−1)l)+1/(2c)[
∫ l
x−ct+(m−1)l ψ(s)ds+

∫ x+ct−(m+1)l
−l −ψ(−s)ds]

if m is odd.

10. u(x, t) = 1/2[cos(x+ 3t) + cos(x− 3t)]

Exercise 3.3

1. Using the method of reflection and the formula (2) in Section 3.3, we have

u(x, t) =

∫ ∞
−∞

S(x− y, t)φodd(y)dy +

∫ t

0

∫ ∞
−∞

S(x− y, t− s)fodd(y, s)dyds

=

∫ ∞
0

[S(x− y, t)− S(x+ y, t)]φ(y)dy

+

∫ t

0

∫ ∞
0

[S(x− y, t− s)− S(x+ y, t− s)]f(y, s)dyds,

where fodd(y, s) is the odd extension of f(y, s) w.r.t the variable y, and

S(x, t) =
1√

4πkt
e−

x2

4kt , t > 0. �

2. Let V (x, t) = v(x, t)− h(t). Then V (x, t) will satisfy

Vt − kVxx = f(x, t)− h′(t) for 0 < x <∞, 0 < t <∞,

V (0, t) = 0, V (x, 0) = φ(x)− h(0).

Using the result above, we have

V (x, t) =

∫ ∞
0

[S(x− y, t)− S(x+ y, t)][φ(y)− h(0)]dy

+

∫ t

0

∫ ∞
0

[S(x− y, t− s)− S(x+ y, t− s)][f(y, s)− h′(t)]dyds,

v(x, t) = h(t) +

∫ ∞
0

[S(x− y, t)− S(x+ y, t)][φ(y)− h(0)]dy

+

∫ t

0

∫ ∞
0

[S(x− y, t− s)− S(x+ y, t− s)][f(y, s)− h′(t)]dyds,

where fodd(y, s) and S(x, t) are shown above. �

3. Let W (x, t) = w(x, t)− xh(t). Then W (x, t) will satisfy

Wt − kWxx = −xh′(t) for 0 < x <∞, 0 < t <∞,

Wx(0, t) = 0, W (x, 0) = φ(x)− xh(0).
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Using the method of reflection of even functions, we have

W (x, t) =

∫ ∞
−∞

S(x− y, t)φeven(y)dy +

∫ t

0

∫ ∞
−∞

S(x− y, t− s)feven(y, s)dyds

=

∫ ∞
0

[S(x− y, t) + S(x+ y, t)][φ(y)− yh(0)]dy

+

∫ t

0

∫ ∞
0

[S(x− y, t− s) + S(x+ y, t− s)][−yh′(s)]dyds,

w(x, t) = W (x, t) + xh(t),

where feven(y, s) is the even extension of f(y, s) in the variable y, and

S(x, t) =
1√

4πkt
e−

x2

4kt , t > 0. �

Exercise 3.4

1. By the Theorem 1 in Section 3.4, we have

u(x, t) =
1

2c

∫∫
∆

ys dyds =
1

2c

∫ t

0

∫ x+c(t−s)

x−c(t−s)
ys dyds =

xt3

6
. �

2. By the Theorem 1 in Section 3.4, we have

u(x, t) =
1

2c

∫∫
∆

eay dyds =
1

2c

∫ t

0

∫ x+c(t−s)

x−c(t−s)
eay dyds

=


eax

a2c2

(
eact + e−act

2
− 1

)
, a 6= 0;

1
2 t

2, a = 0.

�

3. By the Theorem 1 in Section 3.4, we have

u(x, t) =
1

2
[sin(x+ ct) + sin(x− ct)] +

1

2c

∫ x+ct

x−ct
(1 + s)ds+

1

2c

∫∫
∆

cos y dyds

= sinx cos(ct) + (x+ 1)t+
1

c2
cosx[1− cos(ct)]. �

4. Let u1 be the solution of the wave equation

utt = c2uxx + f, u(x, 0) = 0, ut(x, 0) = 0,

u2 be the solution of the wave equation

utt = c2uxx, u(x, 0) = φ(x), ut(x, 0) = 0,

u3 be the solution of the wave equation

utt = c2uxx, u(x, 0) = 0, ut(x, 0) = ψ(x).

Then u = u1 +u2 +u3 is the unique solution for the original problem since the equation and conditions are
linear and the uniqueness of the wave equation. Note that u1, u2, u3 are terms for f , φ and ψ respectively.
Hence the solution of the original problem can be written in the sum of three terms, one each for f , φ
and ψ. �
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5. We write u(x, t) = 1
2c

∫ t
0

∫ x+ct−cs
x−ct+cs f(y, s)dyds. Then by direct calculation, we have

ux =
1

2c

∫ t

0
[f(x+ ct− cs)− f(x− ct+ cs)]ds, uxx =

1

2c

∫ t

0
[f ′(x+ ct− cs)− f ′(x− ct+ cs)]ds,

ut =
1

2

∫ t

0
[f(x+ ct− cs) + f(x− ct+ cs)]ds, utt = f(x) +

c

2

∫ t

0
[f ′(x+ ct− cs)− f ′(x− ct+ cs)]ds.

Hence, we have
utt = c2uxx + f

u(x, 0) =
1

2c

∫ 0

0

∫ x−cs

x+cs
f(y, s)dyds ≡ 0,

ut(x, 0) =
1

2

∫ 0

0
[f(x− cs) + f(x+ cs)]ds ≡ 0. �

8. For arbitrary C2 function ψ, Sψ = 1
2c

∫ x+ct
x−ct ψ(y)dy. We have

[Sψ]tt =
c

2
[ψ′(x+ ct)− ψ′(x− ct)] = c2[Sψ]xx.

[S (0)ψ] =
1

2c

∫ x

x
ψ(y)dy = 0, [St(0)ψ] =

1

2
[ψ(x) + ψ(x)] = ψ(x).

So we conclude that
Stt − c2Sxx = 0, S (0) = 0, St(0) = I. �

9. According to the definition of u(x, t) and the result above, we have

ut = S (0)f(t) +

∫ t

0
St(t− s)f(s)ds =

∫ t

0
St(t− s)f(s)ds,

utt = St(0)f(t) +

∫ t

0
Stt(t− s)f(s)ds = f(t) +

∫ t

0
Stt(t− s)f(s)ds,

uxx =

∫ t

0
Sxx(t− s)f(s)ds.

So we conclude that

utt − c2uxx = f, u(x, 0) =

∫ 0

0
S (−s)f(s)ds = 0, ut(0) =

∫ 0

0
St(−s)f(s)ds = 0 �

11. By the definition of u, u(x, 0) = 0 since x > 0 = ct and u(0, t) = h(t) since x = 0 < ct. For x < ct,
utt = h′′(t− x/c) = c2uxx. For x > t, utt ≡ 0 ≡ c2uxx.

12. For x0 > ct0 > 0, integrate over ∆, where ∆ is the region bounded by three lines

L0 = [(x0 − ct0, 0), (x0 + ct0, 0)], L1 = [(x0 + ct0, 0), (x0, t0)], L2 = [(x0, t0), (x0 − ct0, 0)]

(see figure 6 in Page 76), by Green’s theorem, we have∫∫
∆

fdxdt =

∫∫
∆

utt − c2uxxdxdt =

∫
L0+L1+L2

−c2uxdt− utdx

6
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On L0, dt = 0, ut(x) = ψ(x),
∫
L0
−c2uxdt− utdx = −

∫ x0+ct0
x0−ct0 ψ(x)dx.

On L1, x+ ct = x0 + ct0 =⇒ dx+ cdt = 0,−c2uxdt− utdx = cuxdx+ cutdt = cdu.∫
L1

= c

∫
L1

du = cu(x0, t0)− cφ(x0 + ct0)

By the same reasoning,
∫
L2

= −c
∫
L2
du = −cφ(x0 − ct0) + cu(x0, t0). Summing the three terms, we have

for

u(x, t) =
1

2
[φ(x+ ct) + φ(x− ct)] +

1

2c

∫ x+ct

x−ct
ψ +

1

2c

∫∫
∆

f, if x > ct > 0. (1)

For x0 < ct0, integrate over ∆′, where ∆′ is the reflected region bounded by four lines

L0 = [(ct0 − x0, 0), (x0 + ct0, 0)], L1 = [(x0 + ct0, 0), (x0, t0)],

L2 = [(x0, t0), (0, t0 − x0/c)], L3 = [(0, t0 − x0/c), (ct0 − x0, 0)]

(see figure 2 in Page 72), by Green’s theorem, we have∫∫
∆′

fdxdt =

∫∫
∆′

utt − c2uxxdxdt =

∫
L0+L1+L2+L3

−c2uxdt− utdx

On L0, dt = 0, ut(x) = ψ(x). Hence, we have∫
L0

−c2uxdt− utdx = −
∫ x0+ct0

ct0−x0

ψ(x)dx,∫
L1

= c

∫
L1

du = cu(x0, t0)− cφ(x0 + ct0),∫
L2

= −c
∫
L2

du = −ch(t0 − x0/c) + cu(x0, t0),∫
L3

= c

∫
L3

du = cφ(ct0 − x0)− ch(t0 − x0/c).

Summing the four terms, we have

u(x, t) =
1

2
[φ(x+ ct)− φ(ct− x)]− 1

2c

∫ x+ct

ct−x
ψ + h(t− x

c
) +

1

2c

∫∫
∆′

f, if 0 < x < ct. (2)

13. By the result above, f ≡ 0, φ(x) ≡ x, ψ(x) ≡ 0 and h(t) = t2 imply that

u(x, t) =


1
2 [φ(x+ ct) + φ(x− ct)] + 1

2c

∫ x+ct
x−ct ψ + 1

2c

∫∫
∆

f x ≥ ct > 0

1
2 [φ(x+ ct)− φ(ct− x)]− 1

2c

∫ x+ct
ct−x ψ + h(t− x

c ) + 1
2c

∫∫
∆′

f 0 < x < ct

=

{
x x ≥ ct > 0

x+ (t− x
c )2 0 < x < ct

�

14. Let v(x, t) = u(x, t)− xk(t). Then v satisfies

vtt − c2vxx = −xk′′(t),

7
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v(x, 0) = −xk(0), vt(x, 0) = −xk′(0), vx(0, t) = 0.

Then vx(0, t) = 0 enables us to have an even extension. So the solution of v is

v(x, t) =
1

2
[φeven(x+ ct) + φeven(x− ct)] +

1

2c

∫ x+ct

x−ct
ψeven +

1

2c

∫∫
∆

feven,

where φeven, ψeven and feven are the even extensions of φ, ψ and f respectively. Finally, we can have

u =

{
0 x ≥ ct;
−c
∫ t−x/c

0 k(s)ds x ≤ ct.
�

Exercise 3.5

1. Since
1√
4π

∫ ∞
0

e−p
2/4dp = 1/2,

we have ∣∣∣ 1√
4π

∫ ∞
0

e−p
2/4φ(x+

√
ktp)dp− 1

2
φ(x+)

∣∣∣ ≤ 1√
4π

∫ ∞
0

e−p
2/4|φ(x+

√
ktp)− φ(x+)|dp

1√
4π

∫ ∞
p0

e−p
2/4|φ(x+

√
ktp)− φ(x+)|dp+

1√
4π

∫ p0

0
e−p

2/4|φ(x+
√
ktp)− φ(x+)|dp

For ∀ε > 0, choose p0 large enough such that
∫∞
p0
e−p

2/4dp is small enough and then

1√
4π

∫ ∞
p0

e−p
2/4|φ(x+

√
ktp)− φ(x+)|dp ≤ C max|φ|

∫ ∞
p0

e−p
2/4dp <

ε

2
;

after this, we can choose t is small enough such that

|φ(x+
√
ktp)− φ(x+)| < ε

and then
1√
4π

∫ p0

0
e−p

2/4|φ(x+
√
ktp)− φ(x+)|dp ≤

(
1√
4π

∫ p0

0
e−p

2/4dp

)
ε =

ε

2
.

Hence,
1√
4π

∫ ∞
0

e−p
2/4φ(x+

√
ktp) dp→ 1

2
φ(x+) as t↘ 0;

similarly we can prove that

1√
4π

∫ −∞
0

e−p
2/4φ(x+

√
ktp) dp→ −1

2
φ(x−) as t↘ 0. �

2. Since φ(x) is bounded, by the same argument in Theorem 1, we can show that (1) is an infinitely differ-
entiable solution for t > 0. In addition, by Exercise 1,

lim
t↘0

u(x, t) =
1

2
[φ(x+) + φ(x−)]
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