Suggested Solution to Assignment 2

Exercise 2.1

1. By d'Alembert's formula, the solution is

$$
\begin{aligned}
u(x, t) & =\frac{1}{2}\left[e^{x+c t}+e^{x-c t}\right]+\frac{1}{2 c} \int_{x-c t}^{x+c t} \sin s d s \\
& =\frac{1}{2}\left[e^{x+c t}+e^{x-c t}\right]+\frac{1}{2 c}[\cos (x-c t)-\cos (x+c t)]
\end{aligned}
$$

2. By d'Alembert's formula, the solution is

$$
\begin{aligned}
u(x, t) & =\frac{1}{2}\left\{\log \left[1+(x+c t)^{2}\right]+\log \left[1+(x-c t)^{2}\right]\right\}+\frac{1}{2 c} \int_{x-c t}^{x+c t}(4+s) d s \\
& =\frac{1}{2}\left\{\log \left[1+(x+c t)^{2}\right]+\log \left[1+(x-c t)^{2}\right]\right\}+4 t+x t .
\end{aligned}
$$

4. Define $v=u_{t}+c u_{x}$, then $v_{t}-c v_{x}=0$. By the Geometric Method or Coordinate Method in Section 1.2, we obtain $v(x, t)=a(x+c t)$ and $u_{t}+c u_{x}=a(x+c t)$, which is a nonhomogeneous transport equation. Change variables $t^{\prime}=x+c t, x^{\prime}=x-c t$, then $u_{t^{\prime}}=\left(u t+c u_{x}\right) /(2 c)=a\left(t^{\prime}\right) /(2 c)$. Thus $u=\int a\left(t^{\prime}\right) /(2 c) d t^{\prime}+b\left(x^{\prime}\right)=f(x+c t)+g(x-c t)$.
5. By d'Alembert's formula, the solution is

$$
u(x, t)=\frac{1}{2 c} \int_{x-c t}^{x+c t} \psi(s) d s=\frac{1}{2 c}[\text { length of }(x-c t, x+c t) \cap(-a, a)]
$$

So we have

$u(x, 5 a / c)= \begin{cases}0 & x \in(-\infty,-6 a] \cup[6 a, \infty) ; \\ \frac{1}{2 c}(6 a-x) & x \in[4 a, 6 a] ; \\ \frac{a}{c} & x \in[-4 a, 4 a] ; \\ \frac{1}{2 c}(6 a+x) & x \in[-6 a,-4 a] ;\end{cases}$
Here we omit the figures.
6.

$$
\max _{x} u(x, t)= \begin{cases}t & 0 \leq t \leq \frac{a}{c} \\ \frac{a}{c} & t \geq \frac{a}{c}\end{cases}
$$

7. Since ϕ and ψ are odd function of x,

$$
\begin{aligned}
u(-x, t) & =\frac{1}{2}[\phi(-x+c t)+\phi(-x-c t)]+\frac{1}{2 c} \int_{-x-c t}^{-x+c t} \psi(s) d s \\
& =\frac{1}{2}[-\phi(x-c t)-\phi(x+c t)]+\frac{1}{2 c} \int_{x+c t}^{x-c t} \psi(-s) d(-s) \\
& =-\left\{\frac{1}{2}[\phi(x-c t)+\phi(x+c t)]+\frac{1}{2 c} \int_{x-c t}^{x+c t} \psi(s) d(s)\right\}=-u(x, t)
\end{aligned}
$$

Thus $u(x, t)$ is odd in x for all t.
8. (a) Change variables $v=r u$, then

$$
v_{t t}=r u_{t t}, v_{r r}=\left(r u_{r}+u\right)_{r}=r u_{r r}+2 u_{r}
$$

which implies

$$
v_{t t}=r c^{2}\left(u_{r r}+\frac{2}{r} u_{r}\right)=c^{2} v_{r r}
$$

(b) Using the same skill related to the wave equation(1), we have $v(r, t)=f(r+c t)+g(r-c t)$, where f and g are two arbitrary functions of a single variable. Hence $u=\frac{1}{r} f(r+c t)+\frac{1}{r} g(r-c t)$.
(c) Since $v(r, 0)=r \phi(r)$ and $v_{t}(r, 0)=r \psi(r)$ are both odd, we can extend v to all of \mathbb{R} by odd reflection. That is, we set

$$
\tilde{v}(r, t)= \begin{cases}v(r, t), & r>0 \\ 0, & r=0 \\ -v(-r, t), & r<0\end{cases}
$$

Hence d'Alembert's formula implies

$$
\tilde{v}(r, t)=\frac{1}{2}[(r+c t) \phi(r+c t)+(r-c t) \phi(r-c t)]-\frac{1}{2 c} \int_{r-c t}^{r+c t} s \psi(s) d s
$$

Therefore for $r>0$,

$$
u(r, t)=\frac{1}{r} v(r, t)=\frac{1}{2 r}[(r+c t) \phi(r+c t)+(r-c t) \phi(r-c t)]-\frac{1}{2 c r} \int_{r-c t}^{r+c t} s \psi(s) d s
$$

10. Using the same way above, since $\left(\frac{\partial}{\partial x}-4 \frac{\partial}{\partial t}\right)\left(\frac{\partial}{\partial x}+5 \frac{\partial}{\partial t}\right) u=0$, we can obtain that the general solution is $u(x, t)=f\left(x+\frac{1}{4} t\right)+g\left(x-\frac{1}{5} t\right)$. The initial conditions implies

$$
f(x)=\frac{1}{9}\left[4 \phi(x)+20 \int_{0}^{x} \psi(s) d s+C\right], g(x)=\frac{1}{9}\left[5 \phi(x)-20 \int_{0}^{x} \psi(s) d s-C\right]
$$

Therefore, the solution is

$$
u(x, t)=\frac{1}{9}\left[4 \phi\left(x+\frac{1}{4} t\right)+5 \phi\left(x-\frac{1}{5} t\right)\right]+\frac{20}{9} \int_{x-\frac{1}{5} t}^{x+\frac{1}{4} t} \psi(s) d s
$$

Exercise 2.2

1. By the law of conservation of energy, $E=\frac{1}{2} \int_{-\infty}^{\infty}\left(\rho u_{t}^{2}+T u_{x}^{2}\right) d x$ is a constant independent of t. Since $\phi \equiv 0$ and $\psi \equiv 0$, we have $E \equiv 0$. Thus, the first vanishing theorem implies $u_{t} \equiv 0$ and $u_{x} \equiv 0$. So $u \equiv 0$ since $\phi \equiv 0$.
2. (a) By the chain rule,

$$
\begin{aligned}
& \partial e / \partial t=u_{t} u_{t t}+u_{x} u_{x t}, \partial e / \partial x=u_{t} u_{t x}+u_{x} u_{x x}, \\
& \partial p / \partial t=u_{t} u_{x t}+u_{t t} u_{x}, \partial p / \partial x=u_{t} u_{x x}+u_{t x} u_{x} .
\end{aligned}
$$

Since $u_{t t}=u_{x x}$ and $u_{x t}=u_{t x}$,

$$
\partial e / \partial t=\partial p / \partial x, \partial e / \partial x=\partial p / \partial t
$$

(b) From the result of (a),

$$
e_{t t}=p_{x t}=p_{t x}=e_{x x}, p_{t t}=e_{x t}=e_{t x}=p_{x x}
$$

So both $e(x, t)$ and $p(x, t)$ satisfy the wave equation.
3. (a) $(u(x-y, t))_{t t}=u_{t t}(x-y, t)=c^{2} u_{x x}(x-y, t)=c^{2}(u(x-y, t))_{x x}$.
(b) $\left(u_{x}(x, t)\right)_{t t}=u_{x t t}(x, t)=c^{2} u_{x x x}(x, t)=c^{2}\left(u_{x}(x, t)\right)_{x x}$.
(c) $(u(a x, a t))_{t t}=a^{2} u_{t t}(a x, a t)=a^{2} c^{2} u_{x x}(a x, a t)=c^{2}(u(a x, a t))_{x x}$.
5. For damped string, $u_{t t}-c^{2} u_{x x}+r u_{t}=0$, where $c=\sqrt{\frac{T}{\rho}}$, the energy is

$$
E=\frac{1}{2} \int_{-\infty}^{\infty} \rho\left(u_{t}^{2}+c^{2} u_{x}^{2}\right) d x .
$$

Hence,

$$
\begin{aligned}
d E / d t & =\frac{1}{2} \int_{-\infty}^{\infty} \rho\left(2 u_{t} u_{t t}+2 c^{2} u_{x} u_{x t}\right) d x \\
& =\int_{-\infty}^{\infty} \rho\left(c^{2} u_{t} u_{x x}-r u_{t}^{2}+c^{2} u_{x} u_{x t}\right) d x \\
& =\int_{-\infty}^{\infty} \rho\left(c^{2} u_{t} u_{x x}-r u_{t}^{2}-c^{2} u_{x x} u_{t}\right) d x+\left.\left(c^{2} u_{t} u_{x}\right)\right|_{-\infty} ^{\infty} \\
& =-\int_{-\infty}^{\infty} \rho r u_{t}^{2} d x \leq 0 .
\end{aligned}
$$

Exercise 2.3

2. By the definition of maximum and minimum, $M(T)$ increases(i.e. nondecreasing) and $m(T)$ decreases(i.e. nonincreasing).
3. (a) Use the strong minimum principle, we omit the details here.
(b) Use the minimum principle. Since $u(0, t)=u(1, t)=0, u(x, t) \geq u\left(x, t_{0}\right)$ for $\forall t_{0} \leq t<1$. So $\mu(t)$ is dereasing.
Or let the maximum occur at point $X(t)$, so that $\mu(t)=u(X(t), t)$. Differentiale $\mu(t)$, assuming that $X(t)$ is differentiable, we have

$$
\mu^{\prime}(t)=u_{x}(X(t), t) X^{\prime}(t)+u_{t}(X(t), t)
$$

Note at point $(X(t), t)$ we have $u_{x}=0, u_{x x} \leq 0$. Hence, $\mu^{\prime}(t)=u_{x x}(X(t), t) \leq 0$ and $\mu(t)$ is decreasing.
(c) Here we omit the figure. Note that $u(0, t)=u(1, t)=0$ and the result in (b).
4. (a) Note that $u(0, t)=u(1, t)=0$ and $u(x, 0)=4 x(1-x) \in[0,1]$. Then the conclusion can be verified by strong maximum principle.
(b) Let $v(x, t)=u(1-x, t)$, then $v(0, t)=v(1, t)=0$ and $v(x, 0)=4 x(1-x)=u(x, 0)$. Then the uniqueness theorem for the diffusion theorem implies $u(x, t)=u(1-x, t)$.
(c)

$$
\frac{d}{d t} \int_{0}^{1} u^{2} d x=\int_{0}^{1} 2 u u_{t} d x=2 \int_{0}^{1} u u_{x x} d x=-2 \int_{0}^{1} u_{x}^{2} d x
$$

Since $u(x, t)>0$ for all $t>0$ and $0<x<1$, so u_{x} is not zero function. Hence, $\frac{d}{d t} \int_{0}^{1} u^{2} d x<0$ and $\int_{0}^{1} u^{2} d x$ is a strictly decreasing function of t.
5. (a) We omit the details to verify that $u=-2 x t-x^{2}$ is a solution. When t is fixed, u attains its maximum at $(-t, t)$ and $u(-t, t)=t^{2}$. So u attains its maximum at $(-1,1)$ in the closed rectangle $\{-2 \leq x \leq 2,0 \leq t \leq 1\}$.
(b) In our proof the maximum principle for the diffusion equation, the key point is that $v(x, t)=$ $u(x, t)+\epsilon x^{2}$ satisfies $v_{t}-k v_{x x}<0$. However, here $v_{t}-k v_{x x}=u_{t}-x\left(u+\epsilon x^{2}\right)_{x x}=-2 \epsilon x$ so that the sign of $v_{t}-k v_{x x}$ is not unchanged in the closed rectangle $\{-2 \leq x \leq 2,0 \leq t \leq 1\}$.
6. Let $w=u-v$ and use maximum principle for the diffusion equation. We omit the details.
7. (a) Let $w(x, t)=u(x, t)-v(x, t)$ and $w_{\epsilon}(x, t)=w(x, t)+\epsilon x^{2}$. Since $w_{t}-k w_{x x}=f-g \leq 0$, we can use the same method in the text book to derive the maximum principle for w. So $u \leq v$ at $x=0, x=l$ and $t=0$ implies $w \leq 0$ in the rectangle, i.e. $u \leq v$ for $0 \leq x \leq l, 0 \leq t<\infty$. Here we omit the details of the method in the text book.
(b) Let $u(x, t)=\left(1-e^{-t}\right) \sin x$, and then $u_{t}-u_{x x}=\sin x$ and $u=0$ at $x=0, x=\pi$ and $t=0$. Therefore, the result above implies $v(x, t) \geq\left(1-e^{-t}\right) \sin x$.

Extra 1. (1) Define $v(x, t):=e^{-a t} u(x, t)$, then $v_{t}=k v_{x x}, V(0, t)=v(1, t)=0, v(x, 0)=\sin (\pi x)$. By the Strong Maximum Principle, $0<v(x, t)<1, \forall t>0,0<x<1$. Thus, $0<u(x, t)=e^{a t} v(x, t)<1, \forall t>0,0<x<$ 1
(2)Define $v(x, t):=u(1-x, t)$, then we can easily check that v solves the same problem as u. By the uniqueness of the solution, $u=v$

Extra 2. (a)Follow the proof of the Maximum Principle in the textbook. We only need to change the diffusion inequality (2) in Page 42 to be

$$
v_{t}-k v_{x x}=u_{t}-k u_{x x}-2 \varepsilon k \leq-2 \varepsilon k<0
$$

(b)Define $u(x, t):=v(x, t)-t \max _{-\infty<x<+\infty, 0<t<T} f(x, t)$, then

$$
\begin{aligned}
& u_{t}-k u_{x x}=v_{t}-\max _{-\infty<x<+\infty, 0<t<T} f(x, t)-k v_{x x}=f-\max _{-\infty<x<+\infty, 0<t<T} f(x, t) \leq 0 \\
& \Rightarrow \max _{-\infty<x<+\infty, 0 \leq t \leq T} u(x, t)=\max _{-\infty<x<+\infty, t=0} u(x, t)=0, b y(a) \\
& \Rightarrow v(x, t) \leq t \max _{-\infty<x<+\infty, 0<t<T} f(x, t) \leq T T_{-\infty<x<+\infty, 0<t<T} f(x, t)
\end{aligned}
$$

Exercise 2.4

1. By the general formula,

$$
\begin{aligned}
u(x, t) & =\frac{1}{\sqrt{4 \pi k t}} \int_{-l}^{l} e^{-(x-y)^{2} / 4 k t} d y \\
& =\frac{1}{\sqrt{\pi}} \int_{(-l-x) / \sqrt{4 k t}}^{(l-x) / \sqrt{4 k t}} e^{-p^{2}} d p \\
& =\frac{1}{2}\left\{\mathscr{E} r f\left[\frac{x+l}{\sqrt{4 k t}}\right]-\mathscr{E} r f\left[\frac{x-l}{\sqrt{4 k t}}\right]\right\} .
\end{aligned}
$$

2. By the general formula,

$$
\begin{aligned}
u(x, t) & =\frac{1}{\sqrt{4 \pi k t}} \int_{0}^{\infty} e^{-(x-y)^{2} / 4 k t} d y+\frac{1}{\sqrt{4 \pi k t}} \int_{-\infty}^{0} 3 e^{-(x-y)^{2} / 4 k t} d y \\
& =\frac{1}{2}+\frac{1}{2} \mathscr{E} r f\left[\frac{x}{\sqrt{4 k t}}\right]+\frac{3}{2}-\frac{3}{2} \mathscr{E} r f\left[\frac{x}{\sqrt{4 k t}}\right] \\
& =2-\mathscr{E} r f\left[\frac{x}{\sqrt{4 k t}}\right] .
\end{aligned}
$$

5. Similar to Exercise 2.2.3.
6. By the definition of $S(x, t)$,

$$
\max _{\delta \leq x<\infty}=\frac{1}{\sqrt{4 \pi k t}} e^{-\delta^{2} / 4 k t}
$$

so

$$
\lim _{t \rightarrow 0^{+}} \max _{\delta \leq x<\infty}=\lim _{t \rightarrow 0^{+}} \frac{1}{\sqrt{4 \pi k t}} e^{-\delta^{2} / 4 k t}=\lim _{x \rightarrow+\infty} \frac{\sqrt{x}}{\sqrt{4 \pi k}} e^{-x \delta^{2} / 4 k}=0
$$

11. (a) Since $u(x, t)$ and $-u(-x, t)$ are the solutions and $u(x, 0)=\phi(x)=-\phi(-x)=-u(-x, 0)$, it follows from the uniqueness theorem that $u(x, t)=-u(-x, t)$.
(b) Similar to (a).
(c) Similar to (a).
12. Since

$$
\begin{aligned}
\left|e^{-(x-y)^{2} / 4 k t} \phi(y)\right| & \leq C e^{-(x-y)^{2} / 4 k t+a y^{2}}=C e^{\left(a-\frac{1}{4 k t}\right) y^{2}+\frac{x}{2 k t} y-\frac{x^{2}}{4 k t}}, \\
u(x, t) & =\frac{1}{\sqrt{4 \pi k t}} \int_{-\infty}^{\infty} e^{-(x-y)^{2} / 4 k t} \phi(y) d y
\end{aligned}
$$

makes sense for $a-\frac{1}{4 k t}<0$, i.e. $0<t<1 /(4 a k)$, but not necessarily for large t, for example, $\phi(x)=$ $e^{a x^{2}}$.
15. Suppose that both u and v are solution of the diffusion problem with the same Neumann boundary condition. Let $w(x, t)=u(x, t)-v(x, t)$, then w satisfies

$$
w_{t}=k w_{x x}, \quad w(x, 0)=w_{x}(0, t)=w_{x}(l, t)=0
$$

Thus by the integration by part and the Neumann boundary condition,

$$
\frac{d}{d t} \int_{0}^{l} \frac{1}{2} w^{2}(x, t) d x=-k \int_{0}^{l} w_{x}^{2}(x, t) d x \leq 0
$$

Hence, the initial condition implies

$$
\int_{0}^{l} \frac{1}{2} w^{2}(x, t) d x \leq \int_{0}^{l} \frac{1}{2} w^{2}(x, 0) d x=0
$$

Therefor, $w=0$, i.e. $u=v$ for all $t>0$.
16. Let $v(x, t)=e^{b t} u(x, t)$, then v satisfies

$$
v_{t}-k v_{x x}=0, \quad v(x, 0)=u(x, 0)=\phi(x)
$$

Hence, the general solution of v is

$$
v(x, t)=\frac{1}{\sqrt{4 \pi k t}} \int_{-\infty}^{\infty} e^{-(x-y)^{2} / 4 k t} \phi(y) d y
$$

and the general solution of u is

$$
u(x, t)=\frac{e^{-b t}}{\sqrt{4 \pi k t}} \int_{-\infty}^{\infty} e^{-(x-y)^{2} / 4 k t} \phi(y) d y
$$

18. Let $v(x, t)=u(x+V t, t)$, then v satisfies

$$
v_{t}-k v_{x x}=0, \quad v(x, 0)=u(x, 0)=\phi(x)
$$

Since

$$
\begin{array}{r}
v(x, t)=\frac{1}{\sqrt{4 \pi k t}} \int_{-\infty}^{\infty} e^{-(x-y)^{2} / 4 k t} \phi(y) d y \\
u(x, t)=\frac{1}{\sqrt{4 \pi k t}} \int_{-\infty}^{\infty} e^{-(x-V t-y)^{2} / 4 k t} \phi(y) d y
\end{array}
$$

Exercise 2.5

1. Let $u(x, t)=-x^{2}-(t-1)^{2}$ be the unique solution of the wave equation with boundary conditions:

$$
\begin{gathered}
u_{t t}=u_{x x}, \text { for }-1<x<1,0<t<\infty \\
u(x, 0)=-x^{2}-1, u_{t}(x, 0)=2 \\
u(-1, t)=u(1, t)=-t^{2}+2 t-2
\end{gathered}
$$

But u attains its maximum 0 at $(0,1)$.

