
Tutorial 0:Prerequisite

January 12,2017

1. Integrals of Derivatives.

For one variable, we have fundamental theorem of calculs. Then if f is differential in [a, b], we have

f(b)− f(a) =

∫ b

a

f ′(x)dx

For two variables, we introduce the Green’s Formla. For high variables, Gauss Formula or Divergence
Theorem.

Green’s Fromula.
Let D be a bounded plane domain with a piecewise C1 boundary curve C = bdyD. Consider C to be

parametrized so that it is traversed once with D on the left. Let p(x, y) and q(x, y) be any C1 functions
defined on D = D ∪ C. Then ∫∫

D

(qx − py)dxdy =

∫
C

pdx+ qdy.

Divergence Theorem:
Let D be a bounded spatial domian with a piecewise C1 boundary surface S. Let ~n be the unit

outward normal vector on S. Let f(x) be any C1 vector field on D = D ∪ S. Then∫∫∫
D

∇ · fdx =

∫∫
S

f · ~n.

2.Derivatives of integrals.

Thm 1 Suppose that a and b are constants. If both f(x, t) and ∂f/∂t are continuous in the rectangle
[a, b]× [c, d], then

d

dt

∫ b

a

f(x, t)dx =

∫ b

a

∂f

∂t
(x, t)dx

for t ∈ [c, d].

Thm 2 Let f(x, t) and ∂f/∂t(x, t) be continuous functions in (−∞,∞) × (c, d). Assume that the
integrals

∫∞
−∞|f(x, t)|dx and

∫∞
−∞|∂f/∂t|dx converge unifromly (as improper integrals) for t ∈ (c, d).

Then
d

dt

∫ ∞
−∞

f(x, t)dx =

∫ ∞
−∞

∂f

∂t
(x, t)dx

for t ∈ (c, d).

Thm 3 If I(t) is defined by I(t) =
∫ b(t)

a(t)
f(x, t)dx, where f(x, t) and ∂f/∂t are continuous on the

rectangle [A,B]× [c, d], where [A,B] contains the unions of all intervals [a(t), b(t)], and if a(t) and b(t) is
differentiable on [c, d], then

dI

dt
=

∫ b(t)

a(t)

∂f

∂t
f(x, t)dx+ f(b(t), t)b′(t)− f(a(t), t)a′(t)

Remark: For the two or three variables we have the similar theorems.
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3.ODE

First order ODE: dy
dt = f(t, y).

First order linear equation:
dy

dt
+ p(t)y = q(t)

where p(t) and q(t) are given functions. By multiplying both sides of the equation with an integrating
factor µ(x) = e

∫
p(t)dt, we arrive

d

dt
[µ(t)y] = q(t)µ(t)

thus the general solution is

y = e−
∫
p(t)dt{

∫
q(t)e

∫
p(t)dt + C}.

where C is an arbitrary constant.
Seperable Equations:

M(x)dx+N(y)dy = 0

where M(x) and N(y) are given functions. Let H1 and H2 are the antiderivatives of M and N respectively.
Rewrite the equation as

H ′1(x) +H ′2(y)
dy

dx
= 0

Thus the general solution is
H1(x) +H2(y) = C

where C is an arbitrary constant.
Exact Equations:

M(x, y) +N(x, y)y′ = 0

where M(x, y) and N(x, y) are given functions.
If the equation is exact, My = Nx, that is, there exists a function ψ(x, y) such that

∂ψ

∂x
(x, y) = M(x, y),

∂ψ

∂y
(x, y) = N(x, y)

and such that ψ(x, y) = C defines y = φ(x) implicitly as a differentiation function of x, thus the above
ODE turns to d

dxψ(x, φ(x)) = 0, hence the general solution is ψ(x, y) = C where C is an arbitrary con-
stant.
If the equation is not exact, multiply the equation by an undetermined integrating factors µ(x, y) such
that µ(x, y)M(x, y) + µ(x, y)N(x, y)y′ = 0 is exact, i.e, (µM)y = (µN)x, and then solve the exact equa-
tion to get the general solution.

4.Schrodinger Equation (Example 7 on P17)

Consider the Hydrogem Atom. This is an electron moving around a proton. Let m be the mass of
the electron, e the charge, and h Planck’s constant divided by 2π. Let the origin of coordinates (x, y, z)

be the position of the proton and let r = (x2 + y2 + z2)
1
2 be the spherial coordinate.

Let u(x, y, z, t) be the wave function which represents a possible state of the electron, and |u|2 rep-
resents the probability density of the electron at position (x, y, z) and time t. If D is any region of the
space, then

∫∫∫
D
|u|2dxdydz is the probability of finding the electron in the region D at time t. Thus∫∫∫

Rn

|u|2dxdydz = 1

The motion of the electron satisfies Schrodinger equation:

−ihut =
h2

2m
4u+

e2

r
u

in all of space −∞ < x, y, z <∞
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Remark:
1. The coefficient e2

r is called the potential. For any other atom with a single electron, e2 is replaced
by Ze2, where Z is the atomic number.

2. With many particles (electrons), the wave function u is a function of a large number of variables.
The Shrodinger Equation then becomes:

−ihut =

n∑
n=1

h2

2mi
(uxixi

+ uyiyi
+ uzizi) + V (x1, · · · , zn)u

where the potential V depends onf all the 3n coordinates.
3. If we use the operator A to denote the observable quantities, then the expected value of the

observable A equals ∫∫∫
D

Au(x, y, z, t) · u(x, y, z, t)dxdydz

For example, the position is given by the operator Au = xu, and the momentum is given by Au = −ih∇u.
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