Tutorial 0:Prerequisite

January 12,2017

1. Integrals of Derivatives.

For one variable, we have fundamental theorem of calculs. Then if f is differential in $[a, b]$, we have

$$
f(b)-f(a)=\int_{a}^{b} f^{\prime}(x) d x
$$

For two variables, we introduce the Green's Formla. For high variables, Gauss Formula or Divergence Theorem.

Green's Fromula.

Let D be a bounded plane domain with a piecewise C^{1} boundary curve $C=b d y D$. Consider C to be parametrized so that it is traversed once with D on the left. Let $p(x, y)$ and $q(x, y)$ be any C^{1} functions defined on $\bar{D}=D \cup C$. Then

$$
\iint_{D}\left(q_{x}-p_{y}\right) d x d y=\int_{C} p d x+q d y .
$$

Divergence Theorem:

Let D be a bounded spatial domian with a piecewise C^{1} boundary surface S. Let \vec{n} be the unit outward normal vector on S. Let $f(x)$ be any C^{1} vector field on $\bar{D}=D \cup S$. Then

$$
\iiint_{D} \nabla \cdot f d x=\iint_{S} f \cdot \vec{n} .
$$

2.Derivatives of integrals.

Thm 1 Suppose that a and b are constants. If both $f(x, t)$ and $\partial f / \partial t$ are continuous in the rectangle $[a, b] \times[c, d]$, then

$$
\frac{d}{d t} \int_{a}^{b} f(x, t) d x=\int_{a}^{b} \frac{\partial f}{\partial t}(x, t) d x
$$

for $t \in[c, d]$.
Thm 2 Let $f(x, t)$ and $\partial f / \partial t(x, t)$ be continuous functions in $(-\infty, \infty) \times(c, d)$. Assume that the integrals $\int_{-\infty}^{\infty}|f(x, t)| d x$ and $\int_{-\infty}^{\infty}|\partial f / \partial t| d x$ converge unifromly (as improper integrals) for $t \in(c, d)$. Then

$$
\frac{d}{d t} \int_{-\infty}^{\infty} f(x, t) d x=\int_{-\infty}^{\infty} \frac{\partial f}{\partial t}(x, t) d x
$$

for $t \in(c, d)$.
Thm 3 If $I(t)$ is defined by $I(t)=\int_{a(t)}^{b(t)} f(x, t) d x$, where $f(x, t)$ and $\partial f / \partial t$ are continuous on the rectangle $[A, B] \times[c, d]$, where $[A, B]$ contains the unions of all intervals $[a(t), b(t)]$, and if $a(t)$ and $b(t)$ is differentiable on $[c, d]$, then

$$
\frac{d I}{d t}=\int_{a(t)}^{b(t)} \frac{\partial f}{\partial t} f(x, t) d x+f(b(t), t) b^{\prime}(t)-f(a(t), t) a^{\prime}(t)
$$

Remark: For the two or three variables we have the similar theorems.

3.ODE

First order ODE: $\frac{d y}{d t}=f(t, y)$.
First order linear equation:

$$
\frac{d y}{d t}+p(t) y=q(t)
$$

where $p(t)$ and $q(t)$ are given functions. By multiplying both sides of the equation with an integrating factor $\mu(x)=e^{\int p(t) d t}$, we arrive

$$
\frac{d}{d t}[\mu(t) y]=q(t) \mu(t)
$$

thus the general solution is

$$
y=e^{-\int p(t) d t}\left\{\int q(t) e^{\int p(t) d t}+C\right\}
$$

where C is an arbitrary constant.
Seperable Equations:

$$
M(x) d x+N(y) d y=0
$$

where $M(x)$ and $N(y)$ are given functions. Let H_{1} and H_{2} are the antiderivatives of M and N respectively. Rewrite the equation as

$$
H_{1}^{\prime}(x)+H_{2}^{\prime}(y) \frac{d y}{d x}=0
$$

Thus the general solution is

$$
H_{1}(x)+H_{2}(y)=C
$$

where C is an arbitrary constant.
Exact Equations:

$$
M(x, y)+N(x, y) y^{\prime}=0
$$

where $M(x, y)$ and $N(x, y)$ are given functions.
If the equation is exact, $M_{y}=N_{x}$, that is, there exists a function $\psi(x, y)$ such that

$$
\frac{\partial \psi}{\partial x}(x, y)=M(x, y), \frac{\partial \psi}{\partial y}(x, y)=N(x, y)
$$

and such that $\psi(x, y)=C$ defines $y=\phi(x)$ implicitly as a differentiation function of x, thus the above ODE turns to $\frac{d}{d x} \psi(x, \phi(x))=0$, hence the general solution is $\psi(x, y)=C$ where C is an arbitrary constant.
If the equation is not exact, multiply the equation by an undetermined integrating factors $\mu(x, y)$ such that $\mu(x, y) M(x, y)+\mu(x, y) N(x, y) y^{\prime}=0$ is exact, i.e, $(\mu M)_{y}=(\mu N)_{x}$, and then solve the exact equation to get the general solution.

4.Schrodinger Equation (Example 7 on P17)

Consider the Hydrogem Atom. This is an electron moving around a proton. Let m be the mass of the electron, e the charge, and h Planck's constant divided by 2π. Let the origin of coordinates (x, y, z) be the position of the proton and let $r=\left(x^{2}+y^{2}+z^{2}\right)^{\frac{1}{2}}$ be the spherial coordinate.

Let $u(x, y, z, t)$ be the wave function which represents a possible state of the electron, and $|u|^{2}$ represents the probability density of the electron at position (x, y, z) and time t. If D is any region of the space, then $\iiint_{D}|u|^{2} d x d y d z$ is the probability of finding the electron in the region D at time t. Thus

$$
\iiint_{\mathbb{R}^{n}}|u|^{2} d x d y d z=1
$$

The motion of the electron satisfies Schrodinger equation:

$$
-i h u_{t}=\frac{h^{2}}{2 m} \Delta u+\frac{e^{2}}{r} u
$$

in all of space $-\infty<x, y, z<\infty$

Remark:

1. The coefficient $\frac{e^{2}}{r}$ is called the potential. For any other atom with a single electron, e^{2} is replaced by $Z e^{2}$, where Z is the atomic number.
2. With many particles (electrons), the wave function u is a function of a large number of variables. The Shrodinger Equation then becomes:

$$
-i h u_{t}=\sum_{n=1}^{n} \frac{h^{2}}{2 m_{i}}\left(u_{x_{i} x_{i}}+u_{y_{i} y_{i}}+u_{z_{i} z_{i}}\right)+V\left(x_{1}, \cdots, z_{n}\right) u
$$

where the potential V depends onf all the $3 n$ coordinates.
3. If we use the operator A to denote the observable quantities, then the expected value of the observable A equals

$$
\iiint_{D} A u(x, y, z, t) \cdot \bar{u}(x, y, z, t) d x d y d z
$$

For example, the position is given by the operator $A u=x u$, and the momentum is given by $A u=-i h \nabla u$.

