Suggested Solution to Quiz 2

April 6, 2017

1. (3 points) Can the eigenvalue problem

$$
\left\{\begin{array}{l}
-X^{\prime \prime}(x)=\lambda X(x), \quad 0<x<1 \\
X(0)=0, \quad X^{\prime}(1)=0
\end{array}\right.
$$

have nonpositive eigenvalues? Prove your statements.
Solution: No, the above eigenvalue problem only have positive eigenvalues.
In fact, let λ be the eigenvalue of the problem and $X(x)$ the corresponding eigenfunction. Multiply the equation $-X^{\prime \prime}(x)=\lambda X(x)$ by $X(x)$ and integrate with respect to x, then we get

$$
-\int_{0}^{1} X^{\prime \prime}(x) X(x) d x=\lambda \int_{0}^{1} X^{2}(x) d x
$$

With the help of the boundary conditions, we have

$$
-\int_{0}^{1} X^{\prime \prime}(x) X(x) d x=-\left.X^{\prime}(x) X(x)\right|_{0} ^{1}+\int_{0}^{1}\left|X^{\prime}(x)\right|^{2} d x=\int_{0}^{1}\left|X^{\prime}(x)\right|^{2} d x
$$

Therefore,

$$
\lambda=\frac{\int_{0}^{1}\left|X^{\prime}(x)\right|^{2} d x}{\int_{0}^{1} X^{2}(x) d x} \geq 0
$$

If $\lambda=0$, then we must have $X^{\prime}(x) \equiv 0$ on $[0,1]$ which implies that $X(x)=$ Constant. Since $X(0)=0$, then $X(x) \equiv 0$ which is impossible. Therefore $\lambda>0$.
2. (3 points) Find the Fourier sine series of $f(x)=x$ on $(0, \pi)$. Then find the sum

$$
\sum_{n=0}^{\infty} \frac{1}{n^{2}}
$$

by using Parseval's identity.
Solution: The Fourier sine series of $f(x)=x$ on $(0, \pi)$ is

$$
f(x)=\sum_{n=1}^{\infty} A_{n} \sin n x
$$

where the coefficients are

$$
\begin{aligned}
A_{n} & =\frac{2}{\pi} \int_{0}^{\pi} x \sin n x d x \\
& =-\left.\frac{2}{n \pi} x \cos n x\right|_{0} ^{\pi}+\frac{2}{n \pi} \int_{0}^{\pi} \cos n x d x \\
& =\frac{2}{n}(-1)^{n+1}, \quad n=1,2, \cdots
\end{aligned}
$$

Hence

$$
x=\sum_{n=1}^{\infty} \frac{2(-1)^{n+1}}{n} \sin n x .
$$

The Parseval's equality is

$$
\int_{0}^{\pi}|f(x)|^{2} d x=\sum_{n=0}^{\infty}\left|A_{n}\right|^{2} \int_{0}^{\pi}\left|X_{n}(x)\right|^{2} d x
$$

Here $f(x)=x$ and $X_{n}(x)=\sin n x, n=1,2, \cdots$, thus we have

$$
\frac{\pi^{3}}{3}=\sum_{n=1}^{\infty} \frac{4}{n^{2}} \frac{\pi}{2}
$$

Hence

$$
\sum_{n=0}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}
$$

3. (4 points) Solve the following problem

$$
\left\{\begin{array}{lr}
\partial_{t} u=\partial_{x}^{2} u, & 0<x<\pi, t>0 \\
u(0, t)=0, u(\pi, t)=0, & t>0 \\
u(x, t=0)=x, & 0<x<\pi
\end{array}\right.
$$

Solution: Use the separation of variables method, let $u(x, t)=X(x) T(t)$, then the PDE gives

$$
\frac{X^{\prime \prime}}{X}=\frac{T^{\prime}}{T}=-\lambda .
$$

and boundary conditions yield $X(0)=X(\pi)=0$. Then solve the following eignevalue problem firstly

$$
\left\{\begin{array}{l}
X^{\prime \prime}(x)=-\lambda X(x), \quad 0<x<\pi \\
X(0)=0, X(\pi)=0,
\end{array}\right.
$$

we have $\lambda=n^{2}$ and corresponding eigenfunctions are $X_{n}(x)=\sin n x$ for $n=1,2, \cdots$. Then $T^{\prime}(t)=$ $-n^{2} T(t)$ gives that $T_{n}(t)=A_{n} e^{-n^{2} t}$ with constants A_{n} to be determined. Hence

$$
u(x, t)=\sum_{n=1}^{\infty} X_{n}(x) T_{n}(t)=\sum_{n=1}^{\infty} A_{n} e^{-n^{2} t} \sin n x .
$$

Then initial condition yield

$$
u(x, t=0)=x=\sum_{n=1}^{\infty} A_{n} \sin n x
$$

which is the Fourier sine series of x on $(0, \pi)$, thus the constants $A_{n}=\frac{2}{\pi} \int_{0}^{\pi} x \sin n x d x=\frac{2}{n}(-1)^{n+1}$. Therefore

$$
u(x, t)=\sum_{n=1}^{\infty} \frac{2}{n}(-1)^{n+1} e^{-n^{2} t} \sin n x .
$$

