MATH 4050 Real Analysis

Tutorial 9 (March 22, 24)

The following were discussed in the tutorial this week.

1. Recall the definition of absolutely continuous function on \mathbb{R}.
2. Show that if $f: \mathbb{R} \rightarrow \mathbb{R}$ is absolutely continuous, then f maps sets of measure zero to sets of measure zero. Give counter-examples to show that the converse does not hold in general.
3. State the fact that a function $f: \mathbb{R} \rightarrow \mathbb{R}$ is absolutely continuous if and only if the following three conditions are all satisfied:
(a) f is continuous;
(b) f is of bounded variation;
(c) f maps sets of measure zero to sets of measure zero.
4. Show that if $f: \mathbb{R} \rightarrow \mathbb{R}$ is absolutely continuous, then f maps measurable sets to measurable sets.
5. Recall the Vitali lemma. Apply the Vitali lemma to prove the Lebesgue density theorem: Let $E \subseteq \mathbb{R}$ be measurable. Then

$$
\lim _{r \rightarrow 0^{+}} \frac{m(E \cap[x-r, x+r])}{m([x-r, x+r])}=\chi_{E}(x) \quad \text { for a.e. } x \in \mathbb{R} \text {. }
$$

6. Apply the Lebesgue density theorem to prove the Steinhauss theorem:

Suppose $E \subseteq \mathbb{R}$ is measurable with $m(E)>0$. Then the difference set

$$
E-E:=\{x-y: x, y \in E\}
$$

contains an interval $(-h, h)$ for some $h>0$.
More generally, if $A, B \subseteq \mathbb{R}$ are measurable with $m(A), m(B)>0$, then $A+B$ contains an interval.

