Real Analysis

Tutorial 8 (March 15, 17)

The following were discussed in the tutorial this week.

- 1. Prove that if f is integrable on \mathbb{R} , real-valued, and $\int_E f(x)dx \ge 0$ for every measurable E, then $f(x) \ge 0$ a.e. x. As a result, if $\int_E f(x)dx = 0$ for every measurable E, then f = 0 a.e.
- 2. (Chebyhev's inequality) Let $E \subseteq \mathbb{R}$ be measurable, and let f be a measurable function on E. Then for all $\alpha > 0$,

$$m\{x \in E : |f(x)| \ge \alpha\} \le \frac{1}{\alpha} \int_E |f|.$$

- 3. Let f be an integrable function on E such that $\int_E |f| = 0$. Show that f = 0 a.e. on E.
- 4. Find the limit

$$\lim_{n \to \infty} \int_{-\infty}^{\infty} \frac{(\sin x)^n}{x^2} dx.$$

- 5. Discuss the following modes of convergence for sequences of measurable functions. Let $E \subseteq \mathbb{R}$ be measurable. Let f, f_n be measurable functions on E.
 - (a) Almost everywhere convergence: $f_n \to f$ a.e., that is, there exists $A \subseteq E$ wit $m(E \setminus A) = 0$ such that $f_n(x) \to f(x)$ for all $x \in A$.
 - (b) L^1 -convergence: $f_n \to f$ in L^1 , that is, $||f_n f||_1 := \int_E |f_n f| \to 0$.
 - (c) Convergence in measure: $f_n \to f$ in measure, that is, for all $\varepsilon > 0$, there exists $N \in \mathbb{N}$ such that for $n \ge N$, $m\{x \in E : |f_n(x) - f(x)| \ge \varepsilon\} < \varepsilon$.

These modes of convergence satisfy the following relations:

- (i) $f_n \to f$ in $L^1 \Rightarrow$ there is a subsequence $f_{n_k} \to f$ a.e.
- (ii) $f_n \to f$ in measure \iff every subsequence of $\{f_n\}$ has a subsequence that converges to f a.e. The converse hole if we further assume that $m(E) < \infty$.
- (iii) $f_n \to f$ in $L^1 \Rightarrow f_n \to f$ in measure.