MATH 4050 Real Analysis

Tutorial 13 (April 19, 21)

The following were discussed in the tutorial this week.

1. Let f be defined by

$$
f(x)= \begin{cases}\sin x & \text { if } \sin x \in \mathbb{Q} \\ \cos ^{2} x & \text { if } \sin x \notin \mathbb{Q}\end{cases}
$$

Is f measurable/integrable over the interval $\left[0, \frac{\pi}{2}\right]$? If yes, find the value of $\int_{0}^{\frac{\pi}{2}} f$; if not explain why. Provide your reasoning.
2. Let $1 \leq p<\infty$. Suppose $E \subseteq \mathbb{R}$ is measurable. If $f, f_{n} \in L_{p}(E)(\forall n \in \mathbb{N})$ are such that $\lim _{n}\left\|f_{n}\right\|_{p}=\|f\|_{p}$ and $\left\{f_{n}\right\}$ converges to f almost everywhere on E, show that

$$
\lim _{n}\left\|f_{n}-f\right\|_{p}=0
$$

Does the same result hold if $p=\infty$?
3. (Fubini) Let $\left\{f_{n}\right\}_{n=1}^{\infty}$ be a sequence of nondecreasing (or nonincreasing) real-valued functions on an interval $[a, b]$ such that $\sum_{n=1}^{\infty} f_{n}(x)=s(x)$ exists and is finite in $[a, b]$. Show that

$$
s^{\prime}(x)=\sum_{n=1}^{\infty} f_{n}^{\prime}(x) \quad \text { a.e. in }[a, b] .
$$

4. Prove the following version of Vitali lemma:

Suppose $m^{*}(E)<\infty$. Let \mathcal{U} be a Vitali cover of E. Then there is a countable disjoint subcollection $\left\{I_{j}\right\} \subseteq \mathcal{U}$ such that

$$
m^{*}\left(E \backslash \bigcup_{j} I_{j}\right)=0
$$

The assumption " $m^{*}(E)<\infty$ " can also be removed.
5. Let E be a (not necessarily countable) union of a family of quite arbitrary intervals, each being open, closed, half open and half closed. Prove that E is Lebesgue measurable.

