MATH 4050 Real Analysis

Tutorial 12 (April 12)

The following were discussed in the tutorial this week.

Let E be a measurable subset of \mathbb{R} .

1. Let $1 \le p < \infty$. Recall that

$$L^{p}(E) = \{ f \text{ measurable function on } E \text{ and } \|f\|_{p} := \left(\int_{E} |f|^{p} \right)^{1/p} < \infty \},$$

where we identify functions that are equal almost everywhere on E. The Riesz-Fisher theorem asserts that $(L^p(E), \|\cdot\|_p)$ is a Banach space.

2. Let

$$L^{\infty}(E) = \{$$
bounded measurable functions on $E\}$.

where we again identify functions that are equal almost everywhere on E. Define

$$||f||_{\infty} = \inf\{\alpha : m(\{x \in E : |f(x)| > \alpha\}) = 0\}.$$

Then it is easy to see that

$$||f||_{\infty} \leq \lambda \quad \iff \quad |f(x)| \leq \lambda \text{ for a.e. } x \in E.$$

Moreover $(L^{\infty}(E), \|\cdot\|_{\infty})$ is also a Banach space.

3. Recall the Hölder inequality: if $1 \le p, q \le \infty$ satisfy $\frac{1}{p} + \frac{1}{q} = 1$, then

$$||fg||_1 \le ||f||_p \cdot ||g||_q$$

- 4. Suppose $m(E) < \infty$. Show that if $1 \le p < q \le \infty$, then $L^q(E) \subseteq L^p(E)$. The assumption " $m(E) < \infty$ " cannot be dropped.
- 5. Show that if $1 \leq r , then <math>||f||_p \leq \max(||f||_r, ||f||_s)$. In particular, $L^r(E) \cap L^s(E) \subseteq L^p(E)$.
- 6. Suppose $||f||_r < \infty$ for some $1 \le r < \infty$. Show that

$$||f||_p \to ||f||_{\infty} \quad \text{as } p \to \infty.$$