Solution 3

1. Show that $\inf X \geq \inf Y$ whenever $X \subseteq Y(\subseteq \mathbb{R})$ and hence that $m^{*}(A) \uparrow$ (i.e. $m^{*}(A) \leq$ $m^{*}(B)$ if $\left.A \subseteq B(\subseteq \mathbb{R})\right)$.

Solution. Let $x \in X$. Then $x \in Y$, and hence by the definition of infimum, $x \geq \inf Y$. Since $x \in X$ is arbitrary, we have $\inf X \geq \inf Y$. The last statement follows immediately from the definition

$$
m^{*}(A):=\inf \left\{\sum_{k=1}^{\infty} \ell\left(I_{k}\right):\left\{I_{k}\right\}_{k=1}^{\infty} \text { is a countable open-interval cover of } A\right\}
$$

and the fact that if $A \subseteq B \subseteq \mathbb{R}$, then any countable interval cover of B is also a countable interval cover of A.
2. Let \mathcal{A} be an algebra of subsets of X. Show that \mathcal{A} is a σ-algebra if (and only if) \mathcal{A} is stable with respect to countable disjoint unions:

$$
\bigcup_{n=1}^{\infty} A_{n} \in \mathcal{A} \text { whenever } A_{n} \in \mathcal{A} \forall n \in \mathbb{N} \text { and } A_{m} \cap A_{n}=\emptyset \forall m \neq n .
$$

Solution. Suppose \mathcal{A} is an algebra of subset of X that is stable with respect to countable disjoint unions. To show that \mathcal{A} is a σ-algebra, it suffices to show that \mathcal{A} is stable with respect to countable (but not necessarily disjoint) union. Let $B_{n} \in \mathcal{A}$ for $n \in \mathbb{N}$. Define

$$
C_{1}:=B_{1} \quad \text { and } \quad C_{n}:=B_{n} \backslash \bigcup_{k=1}^{n-1} B_{k} \text { for } n \geq 2
$$

Clearly the collection $\left\{C_{n}\right\}_{n=1}^{\infty}$ is pairwise disjoint, and each $C_{n} \in \mathcal{A}$ since \mathcal{A} is an algebra. Moreover,

$$
\begin{aligned}
C_{1} \cup C_{2} & =B_{1} \cup\left(B_{2} \backslash B_{1}\right)=B_{1} \cup B_{2}, \\
C_{1} \cup C_{2} \cup C_{3} & =B_{1} \cup B_{2} \cup\left(B_{3} \backslash\left(B_{1} \cup B_{2}\right)\right)=B_{1} \cup B_{2} \cup B_{3},
\end{aligned}
$$

$$
\vdots
$$

and so on. Hence $\bigcup_{n=1}^{\infty} B_{n}=\bigcup_{n=1}^{\infty} C_{n} \in \mathcal{A}$.
3. Suppose $[a, b](\subseteq \mathbb{R})$ is covered by a finite family \mathcal{C} of open intervals. Show that $b-a \leq$ sum of lengths of intervals in \mathcal{C} (by MI to $n:=\#(\mathcal{C})$, the number of elements of \mathcal{C}).

Solution. Let $P(n)$ be the statement: if $[a, b]$ is a closed bounded interval that is covered by a finite family \mathcal{C} of open intervals with $\#(\mathcal{C})=n$, then $b-a \leq$ sum of lengths of intervals in \mathcal{C}.
Suppose $\#(\mathcal{C})=1$ and $\mathcal{C}=\{[c, d]\}$. Then clearly $b-a \leq d-c$. Hence $P(1)$ is true.
Assume that $P(k)$ is true. Suppose $[a, b]$ is a closed bounded interval that is covered by a finite family $\mathcal{C}=\left\{\left(c_{i}, d_{i}\right)\right\}_{i=1}^{k+1}$ of open intervals. Without loss of generality, we may assume that $a \in\left(c_{1}, d_{1}\right)$. Then $\left[d_{1}, b\right]$ is a closed bounded interval covered by $\left\{\left(c_{i}, d_{i}\right)\right\}_{i=2}^{k+1}$. Now the induction assumption implies that

$$
b-d_{1} \leq \sum_{i=2}^{k+1}\left|c_{i}-d_{i}\right|
$$

and hence

$$
b-a=\left(d_{1}-a\right)+\left(b-d_{1}\right) \leq\left|c_{1}-d_{1}\right|+\sum_{i=2}^{k+1}\left|c_{i}-d_{i}\right|=\sum_{i=1}^{k+1}\left|c_{i}-d_{i}\right| .
$$

So $P(k+1)$ is true.
By MI, $P(n)$ is true for all $n \in \mathbb{N}$.
4. (cf. Royden 3rd, p.52, Q51) Upper/Lower Envelopes of $f:[a, b] \rightarrow \mathbb{R}$.

Define $h, g:[a, b] \rightarrow[-\infty, \infty]$ by

$$
h(y):=\inf \left\{h_{\delta}(y): \delta>0\right\} \quad \text { for all } y \in[a, b],
$$

where $h_{\delta}(y):=\sup \{f(x): x \in[a, b],|x-y|<\delta\}$; and

$$
g(y):=\sup \left\{g_{\delta}(y): \delta>0\right\} \quad \text { for all } y \in[a, b],
$$

where $g_{\delta}(y):=\inf \{f(x): x \in[a, b],|x-y|<\delta\}$. Prove the following:
(a) $g \leq f \leq h$ pointwisely on $[a, b]$, and for all $x \in[a, b], g(x)=f(x)$ if and only if f is lower semicontinuous (l.s.c) at $x(f(x)=h(x)$ if and only if f is upper semicontinuous (u.s.c) at x), so $g(x)=h(x)$ if and only if f is continuous at x.
(b) If f is bounded (so g, h are real-valued), then g is l.s.c and h is u.s.c.
(c) If ϕ is a l.s.c function on $[a, b]$ such that $\phi \leq f$ (pointwise) on $[a, b]$, then $\phi \leq g$. State and show the corresponding result for h.
(d) Let $C_{n}:=\left\{x \in[a, b]: h(x)-g(x)<\frac{1}{n}\right\}$ for all $n \in \mathbb{N}$. Then $C:=\bigcap_{n=1}^{\infty} C_{n}$ is exactly the set of all continuity points of f and is a G_{δ}-set.

Note: More suggestive notations for g, h are \underline{f}, \bar{f}.
Solution. (a) Clearly $g_{\delta}(x) \leq f(x) \leq h_{\delta}(x)$ for all $x \in[a, b]$ and $\delta>0$. Hence $g \leq f \leq h$ pointwisely on $[a, b]$.
Suppose f is l.s.c at x, that is, for all $\varepsilon>0$, there exists $\delta>0$ such that $f(x)-\varepsilon<f(y)$ whenever $y \in[a, b]$ and $|y-x|<\delta$. Then $f(x)-\varepsilon \leq g_{\delta}(x) \leq g(x)$. Since $\varepsilon>0$ is arbitrary, we have $f(x) \leq g(x)$, and hence $f(x)=g(x)$.
On the other hand, suppose $f(x)=g(x)$. Let $\varepsilon>0$. Fix $\delta>0$ such that $g(x)<$ $g_{\delta}(x)+\varepsilon$. Since $(y-\delta / 2, y+\delta / 2) \subseteq(x-\delta, x+\delta)$ whenever $y \in(x-\delta / 2, x+\delta / 2) \cap[a, b]$, then it follows from the definition that

$$
g_{\delta}(x) \leq g_{\delta / 2}(y) \leq g(y)
$$

and hence $f(x)-\varepsilon=g(x)-\varepsilon<g_{\delta}(x) \leq g(y) \leq f(y)$. Therefore f is l.s.c at x.
Similarly, one can show that $f(x)=h(x)$ if and only if f is u.s.c at x.
The last assertion now follows immediately from above and the simple fact that f is continuous at x if and only if it is both l.s.c and u.s.c at x.
(b) The proof is essentially the same as that in the second part of (a). Let $x \in[a, b]$ and $\varepsilon>0$. Since g is real-valued, we can find $\delta>0$ such that $g(x)<g_{\delta}(x)+\varepsilon$. Note that $(y-\delta / 2, y+\delta / 2) \subseteq(x-\delta, x+\delta)$ if $|x-y|<\delta / 2$. It follows from the definition that whenever $y \in(x-\delta / 2, x+\delta / 2) \cap[a, b]$, we have

$$
g(x)-\varepsilon<g_{\delta}(x) \leq g_{\delta / 2}(y) \leq g(y)
$$

Therefore g is l.s.c on $[a, b]$.
Similarly one can show that h is u.s.c on $[a, b]$.
(c) It suffices to prove that if ϕ is l.s.c at x and $\phi \leq f$ on $[a, b]$, then $\phi(x) \leq \underline{f}(x)$. From the definition,

$$
\phi(x):=\sup _{\delta>0}(\inf \{\phi(y): y \in[a, b]:|x-y|<\delta\}) \leq g(x)
$$

Since ϕ is l.s.c at x, we have $\underline{\phi}(x)=\phi(x)$ by (a), and the result follows.
Similarly, one can prove the corresponding result for h : if ψ is a u.s.c function on $[a, b]$ such that $f \leq \psi$ on $[a, b]$, then $h \leq \psi$.
(d) By (a), we have

$$
\begin{aligned}
\{x \in[a, b]: f \text { continuous at } x\} & =\{x \in[a, b]: g(x)=h(x)\} \\
& =\bigcap_{n=1}^{\infty}\{x \in[a, b]: h(x)-g(x)<1 / n\} \\
& =\bigcap_{n=1}^{\infty} C_{n}=C .
\end{aligned}
$$

To see that C is a G_{δ}-set (in $[a, b]$), it suffices to show that, given any $\lambda>0$, $A:=\{x \in[a, b]: h(x)-g(x)<\lambda\}$ is open in $[a, b]$. Let $x_{0} \in A$. Then there exists $\gamma \in(0,1)$ such that $h\left(x_{0}\right)-g\left(x_{0}\right)<\gamma \lambda$. By the definitions of h, g, there exists $\delta_{1}, \delta_{2}>0$ such that $h_{\delta_{1}}\left(x_{0}\right)-g_{\delta_{2}}\left(x_{0}\right)<\gamma \lambda$, and hence

$$
f(y)-f(z)<\gamma \lambda \quad \text { whenever } y, z \in[a, b] \text { and }\left|y-x_{0}\right|<\delta_{1},\left|z-x_{0}\right|<\delta_{2}
$$

In particular, if $x \in[a, b]$ and $\left|x-x_{0}\right|<\delta:=\min \left\{\delta_{1}, \delta_{2}\right\} / 2$, then

$$
f(y)-f(z)<\gamma \lambda \quad \text { whenever } y, z \in[a, b] \text { and }|y-x|,|z-x|<\delta
$$

Thus $h_{\delta}(x)-g_{\delta}(x) \leq \gamma \lambda$, so that $h(x)-g(x) \leq \gamma \lambda<\lambda$ whenever $x \in[a, b]$ and $\left|x-x_{0}\right|<\delta$. Therefore A is an open subset of $[a, b]$.
5. Let $f:[a, b] \rightarrow[m, M]$. For each $P \in \operatorname{Par}[a, b]$, let $u(f ; P)$ and $U(f ; P)$ denote the lower/upper Riemann-sum functions. Let $\left\{P_{n}: n \in \mathbb{N}\right\}$ be a sequence of partitions such that $P_{n} \subseteq P_{n+1} \forall n$ and $\left\|P_{n}\right\| \rightarrow 0(\|P\|$ is the max subinterval length of $P)$. Show that, $\forall x \in[a, b] \backslash A$

$$
\lim _{n}\left(u\left(f ; P_{n}\right)\right)(x)=\underline{f}(x) \quad \text { and } \quad \lim _{n}\left(U\left(f ; P_{n}\right)\right)(x)=\bar{f}(x),
$$

where A denotes the union of all end-points of $P_{n} \forall n$.
Solution. Let ϕ, ψ be bounded functions on $[a, b]$, and P, Q be partitions on $[a, b]$. It is clear from the definitions that the lower and upper Riemann-sum functions satisfy the following properties
(i) $u(\phi ; P) \leq \phi \leq U(\phi ; P)$.
(ii) $u(\phi ; P) \leq u(\phi ; Q)$ and $U(\phi ; Q) \leq U(\phi ; P)$ if $P \subseteq Q$.
(iii) $u(\phi ; P) \leq u(\psi ; P)$ and $U(\phi ; P) \leq U(\psi ; P)$ if $\phi \leq \psi$.
(iv) $u(\phi ; P)$ and $U(\phi ; P)$ are continuous except at the end-points of P.

Let $\left\{P_{n}\right\}$ be a sequence of partitions such that $P_{n} \subseteq P_{n+1} \forall n$ and $\left\|P_{n}\right\| \rightarrow 0$. Then (ii) implies that $u\left(f ; P_{n}\right)$ is an increasing sequence of functions, so that $\lim _{n} u\left(f ; P_{n}\right)$ exists. Moreover we have

$$
\begin{equation*}
u\left(\underline{f} ; P_{n}\right)(x) \leq u\left(f ; P_{n}\right)(x) \leq \underline{f}(x), \quad \text { for all } x \in[a, b] \backslash A \tag{1}
\end{equation*}
$$

where the first inequality follows from 4 (a) and (iii), while the second one follows from (the proof of) 4 (c), (i) and (iv).
Fix $x \in[a, b] \backslash A$. Since \underline{f} is l.s.c at x, there exists $\delta>0$ such that

$$
\begin{equation*}
\underline{f}(x)-\varepsilon<\underline{f}(y) \quad \text { whenever } y \in[a, b] \text { and }|y-x|<\delta \tag{2}
\end{equation*}
$$

Choose N so large such that $\left\|P_{N}\right\|<\delta$. Suppose $a=a_{0}<a_{1}<\cdots<a_{k}=b$ are the end-points of P_{N}. Then (2) implies that

$$
\underline{f}(x)-\varepsilon \leq \sum_{i=1}^{k}\left(\inf _{y \in\left(x_{i-1}, x_{i}\right)} \underline{f}(y)\right) \chi_{\left(x_{i-1}, x_{i}\right)}(x)=u\left(\underline{f} ; P_{N}\right)(x)
$$

Combining this with (1) and (ii), we have

$$
\underline{f}(x)-\varepsilon \leq u\left(f ; P_{N}\right)(x) \leq u\left(f ; P_{n}\right)(x) \leq \underline{f}(x) \quad \text { for } n \geq N
$$

and hence $\lim _{n} u\left(f ; P_{n}\right)(x)=\underline{f}(x)$.
Similarly we can show that $\lim _{n} U\left(f ; P_{n}\right)(x)=\bar{f}(x)$ for $x \in[a, b] \backslash A$.

