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Solution 3

1. Show that inf X ≥ inf Y whenever X ⊆ Y (⊆ R) and hence that m∗(A) ↑ (i.e. m∗(A) ≤
m∗(B) if A ⊆ B(⊆ R)).

Solution. Let x ∈ X. Then x ∈ Y , and hence by the definition of infimum, x ≥ inf Y .
Since x ∈ X is arbitrary, we have inf X ≥ inf Y . The last statement follows immediately
from the definition

m∗(A) := inf{
∞∑
k=1

`(Ik) : {Ik}∞k=1 is a countable open-interval cover of A},

and the fact that if A ⊆ B ⊆ R, then any countable interval cover of B is also a countable
interval cover of A. J

2. Let A be an algebra of subsets of X. Show that A is a σ-algebra if (and only if) A is
stable with respect to countable disjoint unions:

∞⋃
n=1

An ∈ A whenever An ∈ A ∀n ∈ N and Am ∩An = ∅ ∀m 6= n.

Solution. Suppose A is an algebra of subset of X that is stable with respect to countable
disjoint unions. To show that A is a σ-algebra, it suffices to show that A is stable with
respect to countable (but not necessarily disjoint) union. Let Bn ∈ A for n ∈ N. Define

C1 := B1 and Cn := Bn \
n−1⋃
k=1

Bk for n ≥ 2.

Clearly the collection {Cn}∞n=1 is pairwise disjoint, and each Cn ∈ A since A is an algebra.
Moreover,

C1 ∪ C2 = B1 ∪ (B2 \B1) = B1 ∪B2,

C1 ∪ C2 ∪ C3 = B1 ∪B2 ∪ (B3 \ (B1 ∪B2)) = B1 ∪B2 ∪B3,

...

and so on. Hence
⋃∞
n=1Bn =

⋃∞
n=1Cn ∈ A. J

3. Suppose [a, b] (⊆ R) is covered by a finite family C of open intervals. Show that b − a ≤
sum of lengths of intervals in C (by MI to n := #(C), the number of elements of C).

Solution. Let P (n) be the statement: if [a, b] is a closed bounded interval that is covered
by a finite family C of open intervals with #(C) = n, then b − a ≤ sum of lengths of
intervals in C.
Suppose #(C) = 1 and C = {[c, d]}. Then clearly b− a ≤ d− c. Hence P (1) is true.

Assume that P (k) is true. Suppose [a, b] is a closed bounded interval that is covered by a
finite family C = {(ci, di)}k+1

i=1 of open intervals. Without loss of generality, we may assume
that a ∈ (c1, d1). Then [d1, b] is a closed bounded interval covered by {(ci, di)}k+1

i=2 . Now
the induction assumption implies that

b− d1 ≤
k+1∑
i=2

|ci − di|,
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and hence

b− a = (d1 − a) + (b− d1) ≤ |c1 − d1|+
k+1∑
i=2

|ci − di| =
k+1∑
i=1

|ci − di|.

So P (k + 1) is true.

By MI, P (n) is true for all n ∈ N. J

4. (cf. Royden 3rd, p.52, Q51) Upper/Lower Envelopes of f : [a, b]→ R.

Define h, g : [a, b]→ [−∞,∞] by

h(y) := inf{hδ(y) : δ > 0} for all y ∈ [a, b],

where hδ(y) := sup{f(x) : x ∈ [a, b], |x− y| < δ}; and

g(y) := sup{gδ(y) : δ > 0} for all y ∈ [a, b],

where gδ(y) := inf{f(x) : x ∈ [a, b], |x− y| < δ}. Prove the following:

(a) g ≤ f ≤ h pointwisely on [a, b], and for all x ∈ [a, b], g(x) = f(x) if and only if f is
lower semicontinuous (l.s.c) at x (f(x) = h(x) if and only if f is upper semicontinuous
(u.s.c) at x), so g(x) = h(x) if and only if f is continuous at x.

(b) If f is bounded (so g, h are real-valued), then g is l.s.c and h is u.s.c.

(c) If φ is a l.s.c function on [a, b] such that φ ≤ f (pointwise) on [a, b], then φ ≤ g. State
and show the corresponding result for h.

(d) Let Cn := {x ∈ [a, b] : h(x)− g(x) < 1
n} for all n ∈ N. Then C :=

⋂∞
n=1Cn is exactly

the set of all continuity points of f and is a Gδ-set.

Note: More suggestive notations for g, h are f, f .

Solution. (a) Clearly gδ(x) ≤ f(x) ≤ hδ(x) for all x ∈ [a, b] and δ > 0. Hence g ≤ f ≤ h
pointwisely on [a, b].

Suppose f is l.s.c at x, that is, for all ε > 0, there exists δ > 0 such that f(x)−ε < f(y)
whenever y ∈ [a, b] and |y − x| < δ. Then f(x) − ε ≤ gδ(x) ≤ g(x). Since ε > 0 is
arbitrary, we have f(x) ≤ g(x), and hence f(x) = g(x).

On the other hand, suppose f(x) = g(x). Let ε > 0. Fix δ > 0 such that g(x) <
gδ(x)+ε. Since (y−δ/2, y+δ/2) ⊆ (x−δ, x+δ) whenever y ∈ (x−δ/2, x+δ/2)∩[a, b],
then it follows from the definition that

gδ(x) ≤ gδ/2(y) ≤ g(y),

and hence f(x)− ε = g(x)− ε < gδ(x) ≤ g(y) ≤ f(y). Therefore f is l.s.c at x.

Similarly, one can show that f(x) = h(x) if and only if f is u.s.c at x.

The last assertion now follows immediately from above and the simple fact that f is
continuous at x if and only if it is both l.s.c and u.s.c at x.

(b) The proof is essentially the same as that in the second part of (a). Let x ∈ [a, b] and
ε > 0. Since g is real-valued, we can find δ > 0 such that g(x) < gδ(x) + ε. Note that
(y − δ/2, y + δ/2) ⊆ (x− δ, x+ δ) if |x− y| < δ/2. It follows from the definition that
whenever y ∈ (x− δ/2, x+ δ/2) ∩ [a, b], we have

g(x)− ε < gδ(x) ≤ gδ/2(y) ≤ g(y).

Therefore g is l.s.c on [a, b].

Similarly one can show that h is u.s.c on [a, b].



2017 Spring Real Analysis 3

(c) It suffices to prove that if φ is l.s.c at x and φ ≤ f on [a, b], then φ(x) ≤ f(x). From
the definition,

φ(x) := sup
δ>0

(inf{φ(y) : y ∈ [a, b] : |x− y| < δ}) ≤ g(x)

Since φ is l.s.c at x, we have φ(x) = φ(x) by (a), and the result follows.

Similarly, one can prove the corresponding result for h: if ψ is a u.s.c function on
[a, b] such that f ≤ ψ on [a, b], then h ≤ ψ.

(d) By (a), we have

{x ∈ [a, b] : f continuous at x} = {x ∈ [a, b] : g(x) = h(x)}

=
∞⋂
n=1

{x ∈ [a, b] : h(x)− g(x) < 1/n}

=
∞⋂
n=1

Cn = C.

To see that C is a Gδ-set (in [a, b]), it suffices to show that, given any λ > 0,
A := {x ∈ [a, b] : h(x) − g(x) < λ} is open in [a, b]. Let x0 ∈ A. Then there
exists γ ∈ (0, 1) such that h(x0)− g(x0) < γλ. By the definitions of h, g, there exists
δ1, δ2 > 0 such that hδ1(x0)− gδ2(x0) < γλ, and hence

f(y)− f(z) < γλ whenever y, z ∈ [a, b] and |y − x0| < δ1, |z − x0| < δ2.

In particular, if x ∈ [a, b] and |x− x0| < δ := min{δ1, δ2}/2, then

f(y)− f(z) < γλ whenever y, z ∈ [a, b] and |y − x|, |z − x| < δ.

Thus hδ(x) − gδ(x) ≤ γλ, so that h(x) − g(x) ≤ γλ < λ whenever x ∈ [a, b] and
|x− x0| < δ. Therefore A is an open subset of [a, b].

J

5. Let f : [a, b] → [m,M ]. For each P ∈ Par[a, b], let u(f ;P ) and U(f ;P ) denote the
lower/upper Riemann-sum functions. Let {Pn : n ∈ N} be a sequence of partitions such
that Pn ⊆ Pn+1 ∀n and ‖Pn‖ → 0 (‖P‖ is the max subinterval length of P ). Show that,
∀x ∈ [a, b] \A

lim
n

(u(f ;Pn)) (x) = f(x) and lim
n

(U(f ;Pn)) (x) = f(x),

where A denotes the union of all end-points of Pn ∀n.

Solution. Let φ, ψ be bounded functions on [a, b], and P,Q be partitions on [a, b]. It
is clear from the definitions that the lower and upper Riemann-sum functions satisfy the
following properties

(i) u(φ;P ) ≤ φ ≤ U(φ;P ).

(ii) u(φ;P ) ≤ u(φ;Q) and U(φ;Q) ≤ U(φ;P ) if P ⊆ Q.

(iii) u(φ;P ) ≤ u(ψ;P ) and U(φ;P ) ≤ U(ψ;P ) if φ ≤ ψ.

(iv) u(φ;P ) and U(φ;P ) are continuous except at the end-points of P .
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Let {Pn} be a sequence of partitions such that Pn ⊆ Pn+1 ∀n and ‖Pn‖ → 0. Then (ii)
implies that u(f ;Pn) is an increasing sequence of functions, so that limn u(f ;Pn) exists.
Moreover we have

u(f ;Pn)(x) ≤ u(f ;Pn)(x) ≤ f(x), for all x ∈ [a, b] \A, (1)

where the first inequality follows from 4(a) and (iii), while the second one follows from
(the proof of) 4(c), (i) and (iv).

Fix x ∈ [a, b] \A. Since f is l.s.c at x, there exists δ > 0 such that

f(x)− ε < f(y) whenever y ∈ [a, b] and |y − x| < δ. (2)

Choose N so large such that ‖PN‖ < δ. Suppose a = a0 < a1 < · · · < ak = b are the
end-points of PN . Then (2) implies that

f(x)− ε ≤
k∑
i=1

( inf
y∈(xi−1,xi)

f(y))χ(xi−1,xi)(x) = u(f ;PN )(x).

Combining this with (1) and (ii), we have

f(x)− ε ≤ u(f ;PN )(x) ≤ u(f ;Pn)(x) ≤ f(x) for n ≥ N,

and hence lim
n
u(f ;Pn)(x) = f(x).

Similarly we can show that lim
n
U(f ;Pn)(x) = f(x) for x ∈ [a, b] \A.

J


