Solution 3

1. Show that $\inf X \ge \inf Y$ whenever $X \subseteq Y \subseteq \mathbb{R}$ and hence that $m^*(A) \uparrow (\text{i.e. } m^*(A) \le m^*(B) \text{ if } A \subseteq B \subseteq \mathbb{R})$.

Solution. Let $x \in X$. Then $x \in Y$, and hence by the definition of infimum, $x \ge \inf Y$. Since $x \in X$ is arbitrary, we have $\inf X \ge \inf Y$. The last statement follows immediately from the definition

$$m^*(A) := \inf\{\sum_{k=1}^{\infty} \ell(I_k) : \{I_k\}_{k=1}^{\infty} \text{ is a countable open-interval cover of } A\},\$$

and the fact that if $A \subseteq B \subseteq \mathbb{R}$, then any countable interval cover of B is also a countable interval cover of A.

2. Let \mathcal{A} be an algebra of subsets of X. Show that \mathcal{A} is a σ -algebra if (and only if) \mathcal{A} is stable with respect to countable disjoint unions:

$$\bigcup_{n=1}^{\infty} A_n \in \mathcal{A} \text{ whenever } A_n \in \mathcal{A} \ \forall n \in \mathbb{N} \text{ and } A_m \cap A_n = \emptyset \ \forall m \neq n.$$

Solution. Suppose \mathcal{A} is an algebra of subset of X that is stable with respect to countable disjoint unions. To show that \mathcal{A} is a σ -algebra, it suffices to show that \mathcal{A} is stable with respect to countable (but not necessarily disjoint) union. Let $B_n \in \mathcal{A}$ for $n \in \mathbb{N}$. Define

$$C_1 := B_1$$
 and $C_n := B_n \setminus \bigcup_{k=1}^{n-1} B_k$ for $n \ge 2$.

Clearly the collection $\{C_n\}_{n=1}^{\infty}$ is pairwise disjoint, and each $C_n \in \mathcal{A}$ since \mathcal{A} is an algebra. Moreover,

$$C_{1} \cup C_{2} = B_{1} \cup (B_{2} \setminus B_{1}) = B_{1} \cup B_{2},$$

$$C_{1} \cup C_{2} \cup C_{3} = B_{1} \cup B_{2} \cup (B_{3} \setminus (B_{1} \cup B_{2})) = B_{1} \cup B_{2} \cup B_{3}.$$

$$\vdots$$

and so on. Hence $\bigcup_{n=1}^{\infty} B_n = \bigcup_{n=1}^{\infty} C_n \in \mathcal{A}$.

3. Suppose $[a, b] (\subseteq \mathbb{R})$ is covered by a finite family \mathcal{C} of open intervals. Show that $b - a \leq$ sum of lengths of intervals in \mathcal{C} (by MI to $n := \#(\mathcal{C})$, the number of elements of \mathcal{C}).

Solution. Let P(n) be the statement: if [a, b] is a closed bounded interval that is covered by a finite family C of open intervals with #(C) = n, then $b - a \leq \text{sum of lengths of intervals in } C$.

Suppose $\#(\mathcal{C}) = 1$ and $\mathcal{C} = \{[c, d]\}$. Then clearly $b - a \leq d - c$. Hence P(1) is true.

Assume that P(k) is true. Suppose [a, b] is a closed bounded interval that is covered by a finite family $C = \{(c_i, d_i)\}_{i=1}^{k+1}$ of open intervals. Without loss of generality, we may assume that $a \in (c_1, d_1)$. Then $[d_1, b]$ is a closed bounded interval covered by $\{(c_i, d_i)\}_{i=2}^{k+1}$. Now the induction assumption implies that

$$b - d_1 \le \sum_{i=2}^{k+1} |c_i - d_i|,$$

and hence

$$b - a = (d_1 - a) + (b - d_1) \le |c_1 - d_1| + \sum_{i=2}^{k+1} |c_i - d_i| = \sum_{i=1}^{k+1} |c_i - d_i|.$$

So P(k+1) is true.

By MI, P(n) is true for all $n \in \mathbb{N}$.

4. (cf. Royden 3rd, p.52, Q51) Upper/Lower Envelopes of $f : [a, b] \to \mathbb{R}$. Define $h, g : [a, b] \to [-\infty, \infty]$ by

 $h(y) := \inf\{h_{\delta}(y) : \delta > 0\} \text{ for all } y \in [a, b],$

where $h_{\delta}(y) := \sup\{f(x) : x \in [a, b], |x - y| < \delta\};$ and

$$g(y) := \sup\{g_{\delta}(y) : \delta > 0\}$$
 for all $y \in [a, b]$,

where $g_{\delta}(y) := \inf\{f(x) : x \in [a, b], |x - y| < \delta\}$. Prove the following:

- (a) $g \leq f \leq h$ pointwisely on [a, b], and for all $x \in [a, b]$, g(x) = f(x) if and only if f is lower semicontinuous (l.s.c) at x (f(x) = h(x) if and only if f is upper semicontinuous (u.s.c) at x), so g(x) = h(x) if and only if f is continuous at x.
- (b) If f is bounded (so g, h are real-valued), then g is l.s.c and h is u.s.c.
- (c) If ϕ is a l.s.c function on [a, b] such that $\phi \leq f$ (pointwise) on [a, b], then $\phi \leq g$. State and show the corresponding result for h.
- (d) Let $C_n := \{x \in [a, b] : h(x) g(x) < \frac{1}{n}\}$ for all $n \in \mathbb{N}$. Then $C := \bigcap_{n=1}^{\infty} C_n$ is exactly the set of all continuity points of f and is a G_{δ} -set.

Note: More suggestive notations for g, h are $\underline{f}, \overline{f}$.

Solution. (a) Clearly $g_{\delta}(x) \leq f(x) \leq h_{\delta}(x)$ for all $x \in [a, b]$ and $\delta > 0$. Hence $g \leq f \leq h$ pointwisely on [a, b].

Suppose f is l.s.c at x, that is, for all $\varepsilon > 0$, there exists $\delta > 0$ such that $f(x) - \varepsilon < f(y)$ whenever $y \in [a, b]$ and $|y - x| < \delta$. Then $f(x) - \varepsilon \leq g_{\delta}(x) \leq g(x)$. Since $\varepsilon > 0$ is arbitrary, we have $f(x) \leq g(x)$, and hence f(x) = g(x).

On the other hand, suppose f(x) = g(x). Let $\varepsilon > 0$. Fix $\delta > 0$ such that $g(x) < g_{\delta}(x) + \varepsilon$. Since $(y - \delta/2, y + \delta/2) \subseteq (x - \delta, x + \delta)$ whenever $y \in (x - \delta/2, x + \delta/2) \cap [a, b]$, then it follows from the definition that

$$g_{\delta}(x) \le g_{\delta/2}(y) \le g(y),$$

and hence $f(x) - \varepsilon = g(x) - \varepsilon < g_{\delta}(x) \le g(y) \le f(y)$. Therefore f is l.s.c at x. Similarly, one can show that f(x) = h(x) if and only if f is u.s.c at x.

The last assertion now follows immediately from above and the simple fact that f is continuous at x if and only if it is both l.s.c and u.s.c at x.

(b) The proof is essentially the same as that in the second part of (a). Let $x \in [a, b]$ and $\varepsilon > 0$. Since g is real-valued, we can find $\delta > 0$ such that $g(x) < g_{\delta}(x) + \varepsilon$. Note that $(y - \delta/2, y + \delta/2) \subseteq (x - \delta, x + \delta)$ if $|x - y| < \delta/2$. It follows from the definition that whenever $y \in (x - \delta/2, x + \delta/2) \cap [a, b]$, we have

$$g(x) - \varepsilon < g_{\delta}(x) \le g_{\delta/2}(y) \le g(y).$$

Therefore g is l.s.c on [a, b].

Similarly one can show that h is u.s.c on [a, b].

(c) It suffices to prove that if ϕ is l.s.c at x and $\phi \leq f$ on [a, b], then $\phi(x) \leq \underline{f}(x)$. From the definition,

$$\underline{\phi}(x) := \sup_{\delta > 0} \left(\inf \{ \phi(y) : y \in [a, b] : |x - y| < \delta \} \right) \le g(x)$$

Since ϕ is l.s.c at x, we have $\underline{\phi}(x) = \phi(x)$ by (a), and the result follows. Similarly, one can prove the corresponding result for h: if ψ is a u.s.c function on

(d) By (a), we have

[a, b] such that $f \leq \psi$ on [a, b], then $h \leq \psi$.

$$\{x \in [a,b] : f \text{ continuous at } x\} = \{x \in [a,b] : g(x) = h(x)\}$$
$$= \bigcap_{n=1}^{\infty} \{x \in [a,b] : h(x) - g(x) < 1/n\}$$
$$= \bigcap_{n=1}^{\infty} C_n = C.$$

To see that C is a G_{δ} -set (in [a, b]), it suffices to show that, given any $\lambda > 0$, $A := \{x \in [a, b] : h(x) - g(x) < \lambda\}$ is open in [a, b]. Let $x_0 \in A$. Then there exists $\gamma \in (0, 1)$ such that $h(x_0) - g(x_0) < \gamma \lambda$. By the definitions of h, g, there exists $\delta_1, \delta_2 > 0$ such that $h_{\delta_1}(x_0) - g_{\delta_2}(x_0) < \gamma \lambda$, and hence

$$f(y) - f(z) < \gamma \lambda$$
 whenever $y, z \in [a, b]$ and $|y - x_0| < \delta_1, |z - x_0| < \delta_2$.

In particular, if $x \in [a, b]$ and $|x - x_0| < \delta := \min\{\delta_1, \delta_2\}/2$, then

$$f(y) - f(z) < \gamma \lambda$$
 whenever $y, z \in [a, b]$ and $|y - x|, |z - x| < \delta$.

Thus $h_{\delta}(x) - g_{\delta}(x) \leq \gamma \lambda$, so that $h(x) - g(x) \leq \gamma \lambda < \lambda$ whenever $x \in [a, b]$ and $|x - x_0| < \delta$. Therefore A is an open subset of [a, b].

5. Let $f : [a,b] \to [m,M]$. For each $P \in \operatorname{Par}[a,b]$, let u(f;P) and U(f;P) denote the lower/upper Riemann-sum functions. Let $\{P_n : n \in \mathbb{N}\}$ be a sequence of partitions such that $P_n \subseteq P_{n+1} \forall n$ and $||P_n|| \to 0$ (||P|| is the max subinterval length of P). Show that, $\forall x \in [a,b] \setminus A$

$$\lim_{n} \left(u(f; P_n) \right)(x) = \underline{f}(x) \quad \text{and} \quad \lim_{n} \left(U(f; P_n) \right)(x) = \overline{f}(x),$$

where A denotes the union of all end-points of $P_n \forall n$.

Solution. Let ϕ, ψ be bounded functions on [a, b], and P, Q be partitions on [a, b]. It is clear from the definitions that the lower and upper Riemann-sum functions satisfy the following properties

- (i) $u(\phi; P) \le \phi \le U(\phi; P)$.
- (ii) $u(\phi; P) \le u(\phi; Q)$ and $U(\phi; Q) \le U(\phi; P)$ if $P \subseteq Q$.
- (iii) $u(\phi; P) \le u(\psi; P)$ and $U(\phi; P) \le U(\psi; P)$ if $\phi \le \psi$.
- (iv) $u(\phi; P)$ and $U(\phi; P)$ are continuous except at the end-points of P.

-

Let $\{P_n\}$ be a sequence of partitions such that $P_n \subseteq P_{n+1} \forall n$ and $||P_n|| \to 0$. Then (ii) implies that $u(f; P_n)$ is an increasing sequence of functions, so that $\lim_n u(f; P_n)$ exists. Moreover we have

$$u(\underline{f}; P_n)(x) \le u(f; P_n)(x) \le \underline{f}(x), \quad \text{for all } x \in [a, b] \setminus A, \tag{1}$$

where the first inequality follows from 4(a) and (iii), while the second one follows from (the proof of) 4(c), (i) and (iv).

Fix $x \in [a, b] \setminus A$. Since <u>f</u> is l.s.c at x, there exists $\delta > 0$ such that

$$\underline{f}(x) - \varepsilon < \underline{f}(y)$$
 whenever $y \in [a, b]$ and $|y - x| < \delta$. (2)

Choose N so large such that $||P_N|| < \delta$. Suppose $a = a_0 < a_1 < \cdots < a_k = b$ are the end-points of P_N . Then (2) implies that

$$\underline{f}(x) - \varepsilon \leq \sum_{i=1}^{k} (\inf_{y \in (x_{i-1}, x_i)} \underline{f}(y)) \chi_{(x_{i-1}, x_i)}(x) = u(\underline{f}; P_N)(x).$$

Combining this with (1) and (ii), we have

$$\underline{f}(x) - \varepsilon \le u(f; P_N)(x) \le u(f; P_n)(x) \le \underline{f}(x) \text{ for } n \ge N,$$

and hence $\lim_{n} u(f; P_n)(x) = \underline{f}(x)$.

Similarly we can show that $\lim_{n} U(f; P_n)(x) = \overline{f}(x)$ for $x \in [a, b] \setminus A$.

		4	ï	
4			I	
	7			