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Solution 2

In this assignment, {xn} and {yn} are sequences of real numbers. E is a subset of R.

Recall that the limit superior of {xn} is defined by

lim supxn := inf
n

sup
k≥n

xk.

Clearly zn := supk≥n xk is monotone decreasing, and hence

lim
n

zn = inf
n

zn = lim supxn, (1)

where the limit is taken in the extended real number. Similarly the limit inferior of {xn} is given
by

lim inf xn := sup
n

inf
k≥n

xk = lim
n

inf
k≥n

xk. (2)

1.* (3rd: P.39, Q12)

Show that x = limxn if and only if every subsequence of {xn} has in turn a subsequence
that converges to x. How about x ∈ {−∞,∞}?

Solution. (=⇒) Suppose limxn = x. Then every subsequence {xnk
} of {xn} converges

to x. Therefore {xnk
} has itself as a further subsequence that converges to x.

(⇐=) Suppose on the contrary that {xn} does not converge to x. Then there exists ε0 > 0
such that for all N ∈ N, there is n > N such that

|xn − x| ≥ ε0.

Take N = 1, then we can find n1 > 1 such that |xn1 − x| ≥ ε0. Take N = n1, we can find
n2 > n1 such that |xn2 − x| ≥ ε0. Continue in this way, we can find a subsequence {xnk

}
of {xn} such that

|xnk
− x| ≥ ε0 for k ∈ N.

Now {xnk
} has no further subsequence that converges to x.

Similar results hold if x = −∞ or ∞. J

2. (3rd: P.39, Q13)

Show that the real number l is the limit superior of the sequence {xn} if and only if (i)
given ε > 0, ∃n such that xk < l + ε for all k ≥ n, and (ii) given ε > 0 and n, ∃ k ≥ n
such that xk > l − ε.

Solution. We show that (1) lim supxn < l′ if and only if ∃n such that xk < l′ for all
k ≥ n; and (2) lim supxn > l′′ if and only if for all n, ∃ k ≥ n such that xk > l′′.

(1): By the definition of supremum and infinmum,

lim supxn < l′ ⇐⇒ inf
n

sup
k≥n

xk < l′ ⇐⇒ (∃n)(sup
k≥n

xk < l′)

⇐⇒ (∃n)(∀ k ≥ n)(xk < l′).

(2): By the definition of supremum and infinmum,

lim supxn > l′′ ⇐⇒ inf
n

sup
k≥n

xk > l′′ ⇐⇒ (∀n)(sup
k≥n

xk > l′′)

⇐⇒ (∀n)(∃ k ≥ n)(xk > l′′).
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Remark:

(a) Similar results hold for limit inferior.

(b) (1), (2) may fail if “<” (“>” ) is replaced by “≤” (“≥”).

Now the desired statement follows immediately once we note that lim supxn = l if and
only if given any ε > 0, l − ε < lim supxn < l + ε.

J

3.* (3rd: P.39, Q14)

Show that lim supxn =∞ if and only if given ∆ and n, ∃ k ≥ n such that xk > ∆.

Solution. The statement follows immediately from (2) in question 2 and the fact that
x =∞ if and only if x > ∆ for any ∆ ∈ R. J

4. (3rd: P.39, Q15)

Show that lim inf xn ≤ lim supxn and lim inf xn = lim supxn = l if and only if l = limxn.

Solution. Clearly infk≥n xk ≤ supk≥n xk for all n ≥ 1. Hence, by (1) and (2), and letting
n→∞, we have

lim inf xn = lim
n

inf
k≥n

xk ≤ lim
n

sup
k≥n

xk = lim supxn.

Suppose lim inf xn = lim supxn = l. Then by the results in question 2, given any ε > 0,
there exist n1, n2 ∈ N such that

xj > l − ε for all j ≥ n1

and
xk < l + ε for all k ≥ n2.

Hence l − ε < xn < l + ε for all n ≥ max{n1, n2}. Thus we have limxn = l. The converse
can be proved by reversing the argument above.

J

5.* (3rd: P.39, Q16)

Prove that

lim supxn + lim inf yn ≤ lim sup(xn + yn) ≤ lim supxn + lim sup yn,

provided the right and left sides are not of the form ∞−∞.

Solution. For all n ≥ 1,

xk + inf
j≥n

yj ≤ xk + yk whenever k ≥ n,

so that
sup
k≥n

xk + inf
j≥n

yj ≤ sup
k≥n

(xk + yk).
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By (1) and (2), we can let n→∞ on both sides and obtain

lim supxn + lim inf yn ≤ lim sup(xn + yn),

provided the left side is not of the form ∞−∞.

On the other hand, for all n ≥ 1,

sup
k≥n

(xk + yk) ≤ sup
k≥n

xk + sup
k≥n

yk.

Again, using (1) and (2), and letting n→∞, we obtain

lim sup(xn + yn) ≤ lim supxn + lim sup yn,

provided the right side is not of the form ∞−∞.

J

6. (3rd: P.39, Q17)

Prove that if xn > 0 and yn ≥ 0, then

lim sup(xnyn) ≤ (lim supxn)(lim sup yn),

provided the product on the right is not of the form 0 · ∞.

Solution. For all n ≥ 1,

0 ≤ xkyk ≤ (sup
j≥n

xj)(sup
j≥n

yj) whenever k ≥ n,

since xn, yn ≥ 0, so that
sup
k≥n

(xkyk) ≤ (sup
k≥n

xk)(sup
k≥n

yk).

Using (1) and (2), and letting n→∞, we have

lim sup(xnyn) ≤ (lim supxn)(lim sup yn),

provided the right side is not of the form 0 · ∞. J

7. (3rd: P.46, Q27)

x ∈ R is called a point of closure of E if each neighbourhood of x intersects E. Show
that x is a point of closure of E if and only if there is a sequence {yn} with yn ∈ E and
x = lim yn.

Solution. Suppose x is a point of closure of E. Then the open ball B(x, 1/n), which is
centred at x and of radius 1/n, intersects E for all n ≥ 1. Pick yn ∈ E ∩ B(x, 1/n) for
each n. Then {yn} is a sequence in E such that lim yn = x, since |yn − x| < 1/n for all n.

On the other hand, suppose {yn} is a sequence in E such that x = lim yn. Let U be a
neighbourhood of x. Then yn → x implies that yn ∈ U for all sufficiently large n. In
particular, U ∩ E 6= ∅. J

8. (3rd: P.46, Q28; 4th: P.20, Q30(i))

A number x is called an accumulation point of a set E if it is a point of closure of E \ {x}.
Show that the set E′ of accumulation points of E is a closed set.
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Solution. We would like to show that the complement of E′ is open. Let x ∈ (E′)c. Then
x is not a point of closure of E \{x}. Hence, by definition, there is an open neighbourhood
U of x such that U ∩ (E \ {x}) = ∅. We claim that every y ∈ U is not an accumulation
point of E, so that x ∈ U ⊆ (E′)c, and hence (E′)c is open.

Let y ∈ U \ {x}. Since U \ {x} is open, there is a neighbourhood V of y such that
V ⊆ U \ {x}. Hence

V ∩ (E \ {y}) ⊆ (U \ {x}) ∩ E = ∅.

Thus y is not a point of closure of E \ {y}, that is, y is not an accumulation point of E.

J

9. (3rd: P.46, Q29; 4th: P.20, Q30(ii))

Show that E = E ∪ E′.

Solution. Recall that E is the set of all point of closure of E. From the definitions, it is
clear that E ∪E′ ⊆ E. On the other hand, if x ∈ E \E, then for every neighbourhood U
of x,

U ∩ (E \ {x}) = U ∩ E 6= ∅.

Hence x ∈ E′. Therefore E ⊆ E ∪ E′. J

10. (3rd: P.46, Q30; 4th: P.20, Q31)

A set E is called isolated if E ∩ E′ = ∅. Show that every isolated set of real numbers is
countable.

Solution. Suppose E is isolated. Then no point in E is an accumulation point of E, that
is, for all x ∈ E, there is r > 0 such that B(x, r) ∩ (E \ {x}) = ∅. Hence

E =
⋃
n,k

{x ∈ E ∩ [−k, k] : B(x, 1/n) ∩ (E \ {x}) = ∅} =:
⋃
n,k

En,k.

We will show that En,k is a finite set for each n, k ≥ 1. Then E is countable since it is a
countable union of finite sets.

From the definition of En,k, it is clear that

B(x, 1/2n) ⊆ [−k − 1, k + 1] for all x ∈ En,k,

and
B(x, 1/2n) ∩B(y, 1/2n) = ∅ for all x, y ∈ En,k, x 6= y,

for otherwise, x ∈ B(y, 1/n) ∩ En,k ⊆ B(y, 1/n) ∩ E \ {y}. Hence En,k is finite, otherwise⋃
x∈En,k

B(x, 1/2n) is unbounded.

J


