Solution 2

In this assignment, $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are sequences of real numbers. E is a subset of \mathbb{R}.
Recall that the limit superior of $\left\{x_{n}\right\}$ is defined by

$$
\lim \sup x_{n}:=\inf _{n} \sup _{k \geq n} x_{k} .
$$

Clearly $z_{n}:=\sup _{k \geq n} x_{k}$ is monotone decreasing, and hence

$$
\begin{equation*}
\lim _{n} z_{n}=\inf _{n} z_{n}=\limsup x_{n} \tag{1}
\end{equation*}
$$

where the limit is taken in the extended real number. Similarly the limit inferior of $\left\{x_{n}\right\}$ is given by

$$
\begin{equation*}
\lim \inf x_{n}:=\sup _{n} \inf _{k \geq n} x_{k}=\lim _{n} \inf _{k \geq n} x_{k} \tag{2}
\end{equation*}
$$

1.* (3rd: P.39, Q12)

Show that $x=\lim x_{n}$ if and only if every subsequence of $\left\{x_{n}\right\}$ has in turn a subsequence that converges to x. How about $x \in\{-\infty, \infty\}$?

Solution. (\Longrightarrow) Suppose $\lim x_{n}=x$. Then every subsequence $\left\{x_{n_{k}}\right\}$ of $\left\{x_{n}\right\}$ converges to x. Therefore $\left\{x_{n_{k}}\right\}$ has itself as a further subsequence that converges to x.
(\Longleftarrow) Suppose on the contrary that $\left\{x_{n}\right\}$ does not converge to x. Then there exists $\varepsilon_{0}>0$ such that for all $N \in \mathbb{N}$, there is $n>N$ such that

$$
\left|x_{n}-x\right| \geq \varepsilon_{0} .
$$

Take $N=1$, then we can find $n_{1}>1$ such that $\left|x_{n_{1}}-x\right| \geq \varepsilon_{0}$. Take $N=n_{1}$, we can find $n_{2}>n_{1}$ such that $\left|x_{n_{2}}-x\right| \geq \varepsilon_{0}$. Continue in this way, we can find a subsequence $\left\{x_{n_{k}}\right\}$ of $\left\{x_{n}\right\}$ such that

$$
\left|x_{n_{k}}-x\right| \geq \varepsilon_{0} \quad \text { for } k \in \mathbb{N} .
$$

Now $\left\{x_{n_{k}}\right\}$ has no further subsequence that converges to x.
Similar results hold if $x=-\infty$ or ∞.
2. (3rd: P.39, Q13)

Show that the real number l is the limit superior of the sequence $\left\{x_{n}\right\}$ if and only if (i) given $\varepsilon>0, \exists n$ such that $x_{k}<l+\varepsilon$ for all $k \geq n$, and (ii) given $\varepsilon>0$ and $n, \exists k \geq n$ such that $x_{k}>l-\varepsilon$.

Solution. We show that (1) $\lim \sup x_{n}<l^{\prime}$ if and only if $\exists n$ such that $x_{k}<l^{\prime}$ for all $k \geq n$; and (2) $\lim \sup x_{n}>l^{\prime \prime}$ if and only if for all $n, \exists k \geq n$ such that $x_{k}>l^{\prime \prime}$.
(1): By the definition of supremum and infinmum,

$$
\begin{aligned}
\lim \sup x_{n}<l^{\prime} & \Longleftrightarrow \inf _{n} \sup _{k \geq n} x_{k}<l^{\prime} \Longleftrightarrow(\exists n)\left(\sup _{k \geq n} x_{k}<l^{\prime}\right) \\
& \Longleftrightarrow(\exists n)(\forall k \geq n)\left(x_{k}<l^{\prime}\right) .
\end{aligned}
$$

(2): By the definition of supremum and infinmum,

$$
\begin{aligned}
\lim \sup x_{n}>l^{\prime \prime} & \Longleftrightarrow \inf _{n} \sup _{k \geq n} x_{k}>l^{\prime \prime} \Longleftrightarrow(\forall n)\left(\sup _{k \geq n} x_{k}>l^{\prime \prime}\right) \\
& \Longleftrightarrow(\forall n)(\exists k \geq n)\left(x_{k}>l^{\prime \prime}\right) .
\end{aligned}
$$

Remark:
(a) Similar results hold for limit inferior.
(b) (1), (2) may fail if "<" (">") is replaced by " $\leq "(" \geq$ ").

Now the desired statement follows immediately once we note that $\lim \sup x_{n}=l$ if and only if given any $\varepsilon>0, l-\varepsilon<\lim \sup x_{n}<l+\varepsilon$.
3.* (3rd: P.39, Q14)

Show that $\lim \sup x_{n}=\infty$ if and only if given Δ and $n, \exists k \geq n$ such that $x_{k}>\Delta$.
Solution. The statement follows immediately from (2) in question 2 and the fact that $x=\infty$ if and only if $x>\Delta$ for any $\Delta \in \mathbb{R}$.
4. (3rd: P.39, Q15)

Show that $\lim \inf x_{n} \leq \limsup x_{n}$ and $\lim \inf x_{n}=\limsup x_{n}=l$ if and only if $l=\lim x_{n}$.
Solution. Clearly $\inf _{k \geq n} x_{k} \leq \sup _{k \geq n} x_{k}$ for all $n \geq 1$. Hence, by (1) and (2), and letting $n \rightarrow \infty$, we have

$$
\liminf x_{n}=\lim _{n} \inf _{k \geq n} x_{k} \leq \lim _{n} \sup _{k \geq n} x_{k}=\lim \sup x_{n}
$$

Suppose $\liminf x_{n}=\limsup x_{n}=l$. Then by the results in question 2 , given any $\varepsilon>0$, there exist $n_{1}, n_{2} \in \mathbb{N}$ such that

$$
x_{j}>l-\varepsilon \text { for all } j \geq n_{1}
$$

and

$$
x_{k}<l+\varepsilon \text { for all } k \geq n_{2}
$$

Hence $l-\varepsilon<x_{n}<l+\varepsilon$ for all $n \geq \max \left\{n_{1}, n_{2}\right\}$. Thus we have $\lim x_{n}=l$. The converse can be proved by reversing the argument above.
5.* (3rd: P.39, Q16)

Prove that

$$
\limsup x_{n}+\lim \inf y_{n} \leq \lim \sup \left(x_{n}+y_{n}\right) \leq \lim \sup x_{n}+\lim \sup y_{n},
$$

provided the right and left sides are not of the form $\infty-\infty$.
Solution. For all $n \geq 1$,

$$
x_{k}+\inf _{j \geq n} y_{j} \leq x_{k}+y_{k} \quad \text { whenever } k \geq n
$$

so that

$$
\sup _{k \geq n} x_{k}+\inf _{j \geq n} y_{j} \leq \sup _{k \geq n}\left(x_{k}+y_{k}\right)
$$

By (1) and (2), we can let $n \rightarrow \infty$ on both sides and obtain

$$
\limsup x_{n}+\lim \inf y_{n} \leq \lim \sup \left(x_{n}+y_{n}\right),
$$

provided the left side is not of the form $\infty-\infty$.
On the other hand, for all $n \geq 1$,

$$
\sup _{k \geq n}\left(x_{k}+y_{k}\right) \leq \sup _{k \geq n} x_{k}+\sup _{k \geq n} y_{k} .
$$

Again, using (1) and (2), and letting $n \rightarrow \infty$, we obtain

$$
\limsup \left(x_{n}+y_{n}\right) \leq \lim \sup x_{n}+\lim \sup y_{n}
$$

provided the right side is not of the form $\infty-\infty$.
6. (3rd: P.39, Q17)

Prove that if $x_{n}>0$ and $y_{n} \geq 0$, then

$$
\lim \sup \left(x_{n} y_{n}\right) \leq\left(\lim \sup x_{n}\right)\left(\lim \sup y_{n}\right)
$$

provided the product on the right is not of the form $0 \cdot \infty$.
Solution. For all $n \geq 1$,

$$
0 \leq x_{k} y_{k} \leq\left(\sup _{j \geq n} x_{j}\right)\left(\sup _{j \geq n} y_{j}\right) \quad \text { whenever } k \geq n
$$

since $x_{n}, y_{n} \geq 0$, so that

$$
\sup _{k \geq n}\left(x_{k} y_{k}\right) \leq\left(\sup _{k \geq n} x_{k}\right)\left(\sup _{k \geq n} y_{k}\right) .
$$

Using (1) and (2), and letting $n \rightarrow \infty$, we have

$$
\lim \sup \left(x_{n} y_{n}\right) \leq\left(\lim \sup x_{n}\right)\left(\lim \sup y_{n}\right)
$$

provided the right side is not of the form $0 \cdot \infty$.
7. (3rd: P.46, Q27)
$x \in \mathbb{R}$ is called a point of closure of E if each neighbourhood of x intersects E. Show that x is a point of closure of E if and only if there is a sequence $\left\{y_{n}\right\}$ with $y_{n} \in E$ and $x=\lim y_{n}$.

Solution. Suppose x is a point of closure of E. Then the open ball $B(x, 1 / n)$, which is centred at x and of radius $1 / n$, intersects E for all $n \geq 1$. Pick $y_{n} \in E \cap B(x, 1 / n)$ for each n. Then $\left\{y_{n}\right\}$ is a sequence in E such that $\lim y_{n}=x$, since $\left|y_{n}-x\right|<1 / n$ for all n. On the other hand, suppose $\left\{y_{n}\right\}$ is a sequence in E such that $x=\lim y_{n}$. Let U be a neighbourhood of x. Then $y_{n} \rightarrow x$ implies that $y_{n} \in U$ for all sufficiently large n. In particular, $U \cap E \neq \emptyset$.
8. (3rd: P.46, Q28; 4th: P.20, Q30(i))

A number x is called an accumulation point of a set E if it is a point of closure of $E \backslash\{x\}$. Show that the set E^{\prime} of accumulation points of E is a closed set.

Solution. We would like to show that the complement of E^{\prime} is open. Let $x \in\left(E^{\prime}\right)^{c}$. Then x is not a point of closure of $E \backslash\{x\}$. Hence, by definition, there is an open neighbourhood U of x such that $U \cap(E \backslash\{x\})=\emptyset$. We claim that every $y \in U$ is not an accumulation point of E, so that $x \in U \subseteq\left(E^{\prime}\right)^{c}$, and hence $\left(E^{\prime}\right)^{c}$ is open.
Let $y \in U \backslash\{x\}$. Since $U \backslash\{x\}$ is open, there is a neighbourhood V of y such that $V \subseteq U \backslash\{x\}$. Hence

$$
V \cap(E \backslash\{y\}) \subseteq(U \backslash\{x\}) \cap E=\emptyset
$$

Thus y is not a point of closure of $E \backslash\{y\}$, that is, y is not an accumulation point of E.
9. (3rd: P.46, Q29; 4th: P.20, Q30(ii))

Show that $\bar{E}=E \cup E^{\prime}$.
Solution. Recall that \bar{E} is the set of all point of closure of E. From the definitions, it is clear that $E \cup E^{\prime} \subseteq \bar{E}$. On the other hand, if $x \in \bar{E} \backslash E$, then for every neighbourhood U of x,

$$
U \cap(E \backslash\{x\})=U \cap E \neq \emptyset
$$

Hence $x \in E^{\prime}$. Therefore $\bar{E} \subseteq E \cup E^{\prime}$.
10. (3rd: P.46, Q30; 4th: P.20, Q31)

A set E is called isolated if $E \cap E^{\prime}=\emptyset$. Show that every isolated set of real numbers is countable.

Solution. Suppose E is isolated. Then no point in E is an accumulation point of E, that is, for all $x \in E$, there is $r>0$ such that $B(x, r) \cap(E \backslash\{x\})=\emptyset$. Hence

$$
E=\bigcup_{n, k}\{x \in E \cap[-k, k]: B(x, 1 / n) \cap(E \backslash\{x\})=\emptyset\}=: \bigcup_{n, k} E_{n, k}
$$

We will show that $E_{n, k}$ is a finite set for each $n, k \geq 1$. Then E is countable since it is a countable union of finite sets.
From the definition of $E_{n, k}$, it is clear that

$$
B(x, 1 / 2 n) \subseteq[-k-1, k+1] \quad \text { for all } x \in E_{n, k}
$$

and

$$
B(x, 1 / 2 n) \cap B(y, 1 / 2 n)=\emptyset \quad \text { for all } x, y \in E_{n, k}, x \neq y
$$

for otherwise, $x \in B(y, 1 / n) \cap E_{n, k} \subseteq B(y, 1 / n) \cap E \backslash\{y\}$. Hence $E_{n, k}$ is finite, otherwise $\bigcup_{x \in E_{n, k}} B(x, 1 / 2 n)$ is unbounded.

