## Solution 1

1.* (3rd: P.12, Q6)

Let $f: X \rightarrow Y$ be a mapping of a nonempty space $X$ into $Y$. Show that $f$ is one-to-one if and only if there is a mapping $g: Y \rightarrow X$ such that $g \circ f$ is the identity map on $X$, that is, such that $g(f(x))=x$ for all $x \in X$.

Solution. Suppose $f$ is one-to-one. Fix $x_{0} \in X$. Define $g: Y \rightarrow X$ by

$$
g(y)= \begin{cases}x & \text { if } y \in f[X] \text { and } f(x)=y \\ x_{0} & \text { otherwise }\end{cases}
$$

$g$ is a well-defined mapping since $f$ is one-to-one. It is easy to see that $g \circ f$ is the identity map on $X$.
On the other hand, suppose that such mapping $g$ exists. If $f\left(x_{1}\right)=f\left(x_{2}\right), x_{1}, x_{2} \in X$, then

$$
x_{1}=g\left(f\left(x_{1}\right)\right)=g\left(f\left(x_{2}\right)\right)=x_{2} .
$$

Hence $f$ is one-to-one.
2. (3rd: P.12, Q7)

Let $f: X \rightarrow Y$ be a mapping of $X$ into $Y$. Show that $f$ is onto if there is a mapping $g: Y \rightarrow X$ such that $f \circ g$ is the identity map in $Y$, that is, $f(g(y))=y$ for all $y \in Y$.

Solution. Suppose that such mapping $g$ exists. For any $y \in Y, x:=g(y) \in X$ satisfies

$$
f(x)=f(g(y))=y
$$

Hence $f$ is onto.
3. Show that any set $X$ can be "indexed": $\exists$ a set $I$ and a function $f: I \rightarrow X$ such that $\{f(i): i \in I\}=X$.

Solution. Simply take $I=X$ and $f: I \rightarrow X$ to be the identity function.
4.* (3rd: P.16, Q14)

Given a set $B$ and a collection of sets $\mathcal{C}$. Show that

$$
B \cap\left[\bigcup_{A \in \mathcal{C}} A\right]=\bigcup_{A \in \mathcal{C}}(B \cap A)
$$

## Solution.

$$
\begin{aligned}
x \in B \cap\left[\bigcup_{A \in \mathcal{C}} A\right] & \Longleftrightarrow x \in B \text { and } x \in \bigcup_{A \in \mathcal{C}} A \\
& \Longleftrightarrow x \in B \text { and }(\exists A)(A \in \mathcal{C} \text { and } x \in A) \\
& \Longleftrightarrow(\exists A)(x \in B \text { and }(A \in \mathcal{C} \text { and } x \in A)) \\
& \Longleftrightarrow(\exists A)(A \in \mathcal{C} \text { and } x \in A \cap B) \\
& \Longleftrightarrow x \in \bigcup_{A \in \mathcal{C}}(B \cap A) .
\end{aligned}
$$

5. (3rd: P.16, Q15)

Show that if $\mathcal{A}$ and $\mathcal{B}$ are two collections of sets, then

$$
[\bigcup\{A: A \in \mathcal{A}\}] \cap[\bigcup\{B: B \in \mathcal{B}\}]=\bigcup\{A \cap B:(A, B) \in \mathcal{A} \times \mathcal{B}\}
$$

Solution. Using the result in Q4 twice, we have

$$
\begin{aligned}
& {[\bigcup\{A: A \in \mathcal{A}\}] \cap[\bigcup\{B: B \in \mathcal{B}\}]=\bigcup_{B \in \mathcal{B}}[\bigcup\{A: A \in \mathcal{A}\}] \cap B } \\
= & \bigcup_{B \in \mathcal{B}}\left[\bigcup_{A \in \mathcal{A}}(A \cap B)\right]=\bigcup_{(A, B) \in \mathcal{A} \times \mathcal{B}}(A \cap B)=\bigcup\{A \cap B:(A, B) \in \mathcal{A} \times \mathcal{B}\}
\end{aligned}
$$

6. (3rd: P.16, Q16)

Let $f: X \rightarrow Y$ be a function and $\left\{A_{\lambda}\right\}_{\lambda \in \Lambda}$ be a collection of subsets of $X$.
(a) Show that $f\left[\bigcup A_{\lambda}\right]=\bigcup f\left[A_{\lambda}\right]$.
(b) Show that $f\left[\bigcap A_{\lambda}\right] \subset \bigcap f\left[A_{\lambda}\right]$.
(c) Give an example where $f\left[\bigcap A_{\lambda}\right] \neq \bigcap f\left[A_{\lambda}\right]$.

Solution. (a)

$$
\begin{aligned}
y \in f\left[\bigcup A_{\lambda}\right] & \Longleftrightarrow(\exists x)\left(y=f(x) \text { and } x \in \bigcup A_{\lambda}\right) \\
& \Longleftrightarrow(\exists x)\left[y=f(x) \text { and }(\exists \lambda)\left(x \in A_{\lambda}\right)\right] \\
& \Longleftrightarrow(\exists x)(\exists \lambda)\left(y=f(x) \text { and } x \in A_{\lambda}\right) \\
& \Longleftrightarrow(\exists \lambda)(\exists x)\left(y=f(x) \text { and } x \in A_{\lambda}\right) \\
& \Longleftrightarrow(\exists \lambda)\left(y \in f\left[A_{\lambda}\right]\right) \\
& \Longleftrightarrow y \in \bigcup f\left[A_{\lambda}\right] .
\end{aligned}
$$

(b)

$$
\begin{aligned}
y \in f\left[\bigcap A_{\lambda}\right] & \Longleftrightarrow(\exists x)\left(y=f(x) \text { and } x \in \bigcap A_{\lambda}\right) \\
& \Longleftrightarrow(\exists x)\left[y=f(x) \text { and }(\forall \lambda)\left(x \in A_{\lambda}\right)\right] \\
& \Longleftrightarrow(\exists x)(\forall \lambda)\left(y=f(x) \text { and } x \in A_{\lambda}\right) \\
& \Longleftrightarrow(\forall \lambda)(\exists x)\left(y=f(x) \text { and } x \in A_{\lambda}\right) \\
& \Longleftrightarrow(\forall \lambda)\left(y \in f\left[A_{\lambda}\right]\right) \\
& \Longleftrightarrow y \in \bigcap f\left[A_{\lambda}\right] .
\end{aligned}
$$

(c) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be given by $f(x)=x^{2}$. Let $A=(-\infty, 0)$ and $B=(0, \infty)$. Then $f(A \cap B)=f(\emptyset)=\emptyset$ while $f(A) \cap f(B)=(0, \infty) \cap(0, \infty)=(0, \infty)$.
7.* (3rd: P.16, Q17)

Let $f: X \rightarrow Y$ be a function and $\left\{B_{\lambda}\right\}_{\lambda \in \Lambda}$ be a collection of subsets of $Y$.
(a) Show that $f^{-1}\left[\bigcup B_{\lambda}\right]=\bigcup f^{-1}\left[B_{\lambda}\right]$.
(b) Show that $f^{-1}\left[\bigcap B_{\lambda}\right]=\bigcap f^{-1}\left[B_{\lambda}\right]$.
(c) Show that $f^{-1}\left[B^{c}\right]=\left(f^{-1}[B]\right)^{c}$ for $B \subset Y$.

Solution. (a)

$$
\begin{aligned}
x \in f^{-1}\left[\bigcup B_{\lambda}\right] & \Longleftrightarrow f(x) \in \bigcup B_{\lambda} \\
& \Longleftrightarrow(\exists \lambda)\left(f(x) \in B_{\lambda}\right) \\
& \Longleftrightarrow(\exists \lambda)\left(x \in f^{-1}\left[B_{\lambda}\right]\right) \\
& \Longleftrightarrow x \in \bigcup f^{-1}\left[B_{\lambda}\right]
\end{aligned}
$$

(b)

$$
\begin{aligned}
x \in f^{-1}\left[\bigcap B_{\lambda}\right] & \Longleftrightarrow f(x) \in \bigcap B_{\lambda} \\
& \Longleftrightarrow(\forall \lambda)\left(f(x) \in B_{\lambda}\right) \\
& \Longleftrightarrow(\forall \lambda)\left(x \in f^{-1}\left[B_{\lambda}\right]\right) \\
& \Longleftrightarrow x \in \bigcap f^{-1}\left[B_{\lambda}\right]
\end{aligned}
$$

(c)

$$
\begin{aligned}
x \in f^{-1}\left[B^{c}\right] & \Longleftrightarrow f(x) \in B^{c} \\
& \Longleftrightarrow \neg(f(x) \in B) \\
& \Longleftrightarrow \neg\left(x \in f^{-1}[B]\right) \\
& \Longleftrightarrow x \in\left(f^{-1}[B]\right)^{c} .
\end{aligned}
$$

8.* (3rd: P.16, Q18)
(a) Show that if $f$ maps $X$ into $Y$ and $A \subset X, B \subset Y$, then

$$
f\left[f^{-1}[B]\right] \subset B
$$

and

$$
f^{-1}[f[A]] \supset A
$$

(b) Give examples to show that we need not have equality.
(c) Show that if $f$ maps $X$ onto $Y$ and $B \subset Y$, then

$$
f\left[f^{-1}[B]\right]=B
$$

Solution. (a) It is easy to see that

$$
\begin{aligned}
y \in f\left[f^{-1}[B]\right] & \Longleftrightarrow(\exists x)\left(y=f(x) \text { and } x \in f^{-1}[B]\right) \\
& \Longleftrightarrow(\exists x)(y=f(x) \text { and } f(x) \in B) \\
& \Longleftrightarrow y \in B
\end{aligned}
$$

and

$$
\begin{aligned}
x \in A & \Longleftrightarrow f(x) \in f[A] \\
& \Longleftrightarrow x \in f^{-1}[f[A]] .
\end{aligned}
$$

(b) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be given by $f(x)=x^{2}$. Let $A=[0, \infty)$ and $B=(-\infty, \infty)$. Then

$$
f\left[f^{-1}[B]\right]=f[(-\infty, \infty)]=[0, \infty) \subsetneq B
$$

while

$$
f^{-1}[f[A]]=f^{-1}[[0, \infty)]=(-\infty, \infty) \supsetneq A .
$$

(c) Suppose $f$ maps $X$ onto $Y$. Let $y \in B$. Since $f$ is onto, there exists $x \in X$ such that $f(x)=y$. As $y \in B$, we have $x \in f^{-1}[B]$. Hence $y=f(x) \in f\left[f^{-1}[B]\right]$. Therefore $f\left[f^{-1}[B]\right] \supset B$.
9. Show that $f \mapsto \int_{0}^{1} f(x) d x$ is a "monotone" function on $\mathcal{R}[0,1]$ (consisting of all Riemann integrable functions on $[0,1])$, and $\mathcal{R}[0,1]$ is a linear space. Show that

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} f_{n}(x) d x=\int_{0}^{1} f(x) d x
$$

if $f, f_{n} \in \mathcal{R}[0,1]$ such that

$$
\lim _{n \rightarrow \infty}\left(\sup _{x \in[0,1]}\left|f_{n}(x)-f(x)\right|\right)=0 .
$$

Solution. It is easy to verify that $\mathcal{R}[0,1]$ is a linear space and that $\phi: f \mapsto \int_{0}^{1} f(x) d x$ is a linear, monotone function on $\mathcal{R}[0,1]$. We only prove the limit equality.

Let $\varepsilon>0$. Choose $N \in \mathbb{N}$ such that for all $n \geq N$, we have

$$
\sup _{x \in[0,1]}\left|f_{n}(x)-f(x)\right|<\varepsilon .
$$

The monotonicity and linearity of the function $\phi: f \mapsto \int_{0}^{1} f(x) d x$ imply that

$$
\left|\int_{0}^{1} f_{n}(x) d x-\int_{0}^{1} f(x) d x\right|=\left|\int_{0}^{1}\left(f_{n}(x)-f(x)\right) d x\right| \leq \int_{0}^{1}\left|f_{n}(x)-f(x)\right| d x
$$

Again by the monotonicity of $\phi$, we have, for all $n \geq N$,

$$
\begin{aligned}
\left|\int_{0}^{1} f_{n}(x) d x-\int_{0}^{1} f(x) d x\right| & \leq \int_{0}^{1} \sup _{x \in[0,1]}\left|f_{n}(x)-f(x)\right| d x \\
& \leq \int_{0}^{1} \varepsilon d x=\varepsilon
\end{aligned}
$$

This completes the proof of the limit equality.

