Solution 1

1.* (3rd: P.12, Q6)

Let $f: X \to Y$ be a mapping of a nonempty space X into Y. Show that f is one-to-one if and only if there is a mapping $g: Y \to X$ such that $g \circ f$ is the identity map on X, that is, such that g(f(x)) = x for all $x \in X$.

Solution. Suppose f is one-to-one. Fix $x_0 \in X$. Define $g: Y \to X$ by

$$g(y) = \begin{cases} x & \text{if } y \in f[X] \text{ and } f(x) = y, \\ x_0 & \text{otherwise.} \end{cases}$$

g is a well-defined mapping since f is one-to-one. It is easy to see that $g \circ f$ is the identity map on X.

On the other hand, suppose that such mapping g exists. If $f(x_1) = f(x_2), x_1, x_2 \in X$, then

$$x_1 = g(f(x_1)) = g(f(x_2)) = x_2.$$

Hence f is one-to-one.

2. (3rd: P.12, Q7)

Let $f : X \to Y$ be a mapping of X into Y. Show that f is onto if there is a mapping $g: Y \to X$ such that $f \circ g$ is the identity map in Y, that is, f(g(y)) = y for all $y \in Y$.

Solution. Suppose that such mapping g exists. For any $y \in Y$, $x := g(y) \in X$ satisfies

$$f(x) = f(g(y)) = y$$

Hence f is onto.

3. Show that any set X can be "indexed": \exists a set I and a function $f : I \to X$ such that $\{f(i) : i \in I\} = X$.

Solution. Simply take I = X and $f: I \to X$ to be the identity function.

4.* (3rd: P.16, Q14)

Given a set B and a collection of sets C. Show that

$$B \cap \left[\bigcup_{A \in \mathcal{C}} A\right] = \bigcup_{A \in \mathcal{C}} (B \cap A).$$

Solution.

$$\begin{split} x \in B \cap \left[\bigcup_{A \in \mathcal{C}} A \right] & \Longleftrightarrow \ x \in B \text{ and } x \in \bigcup_{A \in \mathcal{C}} A \\ & \Leftrightarrow \ x \in B \text{ and } (\exists A) (A \in \mathcal{C} \text{ and } x \in A) \\ & \Leftrightarrow \ (\exists A) (x \in B \text{ and } (A \in \mathcal{C} \text{ and } x \in A)) \\ & \Leftrightarrow \ (\exists A) (A \in \mathcal{C} \text{ and } x \in A)) \\ & \Leftrightarrow \ (\exists A) (A \in \mathcal{C} \text{ and } x \in A \cap B) \\ & \Leftrightarrow \ x \in \bigcup_{A \in \mathcal{C}} (B \cap A). \end{split}$$

_	
-	
_	

5. (3rd: P.16, Q15)

Show that if \mathcal{A} and \mathcal{B} are two collections of sets, then

$$\left[\bigcup\{A:A\in\mathcal{A}\}\right]\cap\left[\bigcup\{B:B\in\mathcal{B}\}\right]=\bigcup\{A\cap B:(A,B)\in\mathcal{A}\times\mathcal{B}\}.$$

Solution. Using the result in Q4 twice, we have

$$\begin{bmatrix} \bigcup \{A : A \in \mathcal{A}\} \end{bmatrix} \cap \begin{bmatrix} \bigcup \{B : B \in \mathcal{B}\} \end{bmatrix} = \bigcup_{B \in \mathcal{B}} \begin{bmatrix} \bigcup \{A : A \in \mathcal{A}\} \end{bmatrix} \cap B$$
$$= \bigcup_{B \in \mathcal{B}} \begin{bmatrix} \bigcup_{A \in \mathcal{A}} (A \cap B) \end{bmatrix} = \bigcup_{(A,B) \in \mathcal{A} \times \mathcal{B}} (A \cap B) = \bigcup \{A \cap B : (A,B) \in \mathcal{A} \times \mathcal{B}\}.$$

6. (3rd: P.16, Q16)

Let $f: X \to Y$ be a function and $\{A_{\lambda}\}_{\lambda \in \Lambda}$ be a collection of subsets of X.

- (a) Show that $f[\bigcup A_{\lambda}] = \bigcup f[A_{\lambda}]$.
- (b) Show that $f[\bigcap A_{\lambda}] \subset \bigcap f[A_{\lambda}]$.
- (c) Give an example where $f[\bigcap A_{\lambda}] \neq \bigcap f[A_{\lambda}]$.

Solution. (a)

$$y \in f\left[\bigcup A_{\lambda}\right] \iff (\exists x) \left(y = f(x) \text{ and } x \in \bigcup A_{\lambda}\right)$$
$$\iff (\exists x) \left[y = f(x) \text{ and } (\exists \lambda)(x \in A_{\lambda})\right]$$
$$\iff (\exists x) (\exists \lambda) (y = f(x) \text{ and } x \in A_{\lambda})$$
$$\iff (\exists \lambda) (\exists x) (y = f(x) \text{ and } x \in A_{\lambda})$$
$$\iff (\exists \lambda) (y \in f[A_{\lambda}])$$
$$\iff y \in \bigcup f[A_{\lambda}].$$

(b)

$$y \in f\left[\bigcap A_{\lambda}\right] \iff (\exists x) \left(y = f(x) \text{ and } x \in \bigcap A_{\lambda}\right)$$
$$\iff (\exists x) \left[y = f(x) \text{ and } (\forall \lambda)(x \in A_{\lambda})\right]$$
$$\iff (\exists x) (\forall \lambda) (y = f(x) \text{ and } x \in A_{\lambda})$$
$$\implies (\forall \lambda) (\exists x) (y = f(x) \text{ and } x \in A_{\lambda})$$
$$\iff (\forall \lambda) (y \in f[A_{\lambda}])$$
$$\iff y \in \bigcap f[A_{\lambda}].$$

(c) Let $f : \mathbb{R} \to \mathbb{R}$ be given by $f(x) = x^2$. Let $A = (-\infty, 0)$ and $B = (0, \infty)$. Then $f(A \cap B) = f(\emptyset) = \emptyset$ while $f(A) \cap f(B) = (0, \infty) \cap (0, \infty) = (0, \infty)$.

7.* (3rd: P.16, Q17)

Let $f: X \to Y$ be a function and $\{B_{\lambda}\}_{\lambda \in \Lambda}$ be a collection of subsets of Y.

(a) Show that
$$f^{-1}[\bigcup B_{\lambda}] = \bigcup f^{-1}[B_{\lambda}].$$

(b) Show that $f^{-1}[\bigcap B_{\lambda}] = \bigcap f^{-1}[B_{\lambda}].$
(c) Show that $f^{-1}[B^{c}] = (f^{-1}[B])^{c}$ for $B \subset Y.$

Solution. (a)

$$x \in f^{-1} \left[\bigcup B_{\lambda} \right] \iff f(x) \in \bigcup B_{\lambda}$$
$$\iff (\exists \lambda)(f(x) \in B_{\lambda})$$
$$\iff (\exists \lambda)(x \in f^{-1}[B_{\lambda}])$$
$$\iff x \in \bigcup f^{-1}[B_{\lambda}].$$

(b)

$$\begin{aligned} x \in f^{-1}\left[\bigcap B_{\lambda}\right] &\iff f(x) \in \bigcap B_{\lambda} \\ &\iff (\forall \lambda)(f(x) \in B_{\lambda}) \\ &\iff (\forall \lambda)(x \in f^{-1}[B_{\lambda}]) \\ &\iff x \in \bigcap f^{-1}[B_{\lambda}]. \end{aligned}$$

(c)

$$\begin{aligned} x \in f^{-1}[B^c] & \Longleftrightarrow \ f(x) \in B^c \\ & \Longleftrightarrow \ \neg(f(x) \in B) \\ & \Leftrightarrow \ \neg(x \in f^{-1}[B]) \\ & \Longleftrightarrow \ x \in (f^{-1}[B])^c. \end{aligned}$$

8.* (3rd: P.16, Q18)

(a) Show that if f maps X into Y and $A \subset X$, $B \subset Y$, then

$$f[f^{-1}[B]] \subset B$$

 $\quad \text{and} \quad$

$$f^{-1}[f[A]] \supset A.$$

- (b) Give examples to show that we need not have equality.
- (c) Show that if f maps X onto Y and $B \subset Y$, then

$$f[f^{-1}[B]] = B.$$

Solution. (a) It is easy to see that

$$y \in f[f^{-1}[B]] \iff (\exists x)(y = f(x) \text{ and } x \in f^{-1}[B])$$
$$\iff (\exists x)(y = f(x) \text{ and } f(x) \in B)$$
$$\implies y \in B,$$

and

$$\begin{aligned} x \in A \implies f(x) \in f[A] \\ \iff x \in f^{-1}[f[A]]. \end{aligned}$$

(b) Let $f : \mathbb{R} \to \mathbb{R}$ be given by $f(x) = x^2$. Let $A = [0, \infty)$ and $B = (-\infty, \infty)$. Then

$$f[f^{-1}[B]] = f[(-\infty, \infty)] = [0, \infty) \subsetneq B$$

while

$$f^{-1}[f[A]] = f^{-1}[[0,\infty)] = (-\infty,\infty) \supseteq A.$$

- (c) Suppose f maps X onto Y. Let $y \in B$. Since f is onto, there exists $x \in X$ such that f(x) = y. As $y \in B$, we have $x \in f^{-1}[B]$. Hence $y = f(x) \in f[f^{-1}[B]]$. Therefore $f[f^{-1}[B]] \supset B$.
- 9. Show that $f \mapsto \int_0^1 f(x) dx$ is a "monotone" function on $\mathcal{R}[0, 1]$ (consisting of all Riemann integrable functions on [0, 1]), and $\mathcal{R}[0, 1]$ is a linear space. Show that

$$\lim_{n \to \infty} \int_0^1 f_n(x) dx = \int_0^1 f(x) dx$$

if $f, f_n \in \mathcal{R}[0, 1]$ such that

$$\lim_{n \to \infty} (\sup_{x \in [0,1]} |f_n(x) - f(x)|) = 0.$$

Solution. It is easy to verify that $\mathcal{R}[0,1]$ is a linear space and that $\phi: f \mapsto \int_0^1 f(x) dx$ is a linear, monotone function on $\mathcal{R}[0,1]$. We only prove the limit equality.

Let $\varepsilon > 0$. Choose $N \in \mathbb{N}$ such that for all $n \ge N$, we have

$$\sup_{x \in [0,1]} |f_n(x) - f(x)| < \varepsilon.$$

The monotonicity and linearity of the function $\phi: f \mapsto \int_0^1 f(x) dx$ imply that

$$\left|\int_{0}^{1} f_{n}(x)dx - \int_{0}^{1} f(x)dx\right| = \left|\int_{0}^{1} \left(f_{n}(x) - f(x)\right)dx\right| \le \int_{0}^{1} \left|f_{n}(x) - f(x)\right|dx.$$

Again by the monotonicity of ϕ , we have, for all $n \ge N$,

$$\left| \int_0^1 f_n(x) dx - \int_0^1 f(x) dx \right| \le \int_0^1 \sup_{x \in [0,1]} |f_n(x) - f(x)| \, dx$$
$$\le \int_0^1 \varepsilon \, dx = \varepsilon.$$

This completes the proof of the limit equality.

4