$1 / 3$ tutorial materials

Example 0.1. If $f:[0,1] \rightarrow \mathbb{R}$ is non-decreasing, then f is measurable. (There is some obvious mistakes in the original argument.)

Proof. Assume f is strictly increasing first. Let $c \in \mathbb{R}$, if $\exists p \in[0,1]$ such that $f(p)=c$, then

$$
f^{-1}[(c,+\infty)]=(p, 1]
$$

which is clearly measurable. If not, then we have $f(x) \neq c$ for any $x \in[0,1]$ and

1. $f(0)>c$, or
2. $f(1)<c$, or
3. $f(0)<c<f(1)$.

As f is strictly increasing, the pre-image of the first two cases is either empty set or $[0,1]$. So it suffices to consider the third case. Define

$$
a=\sup \{x \in[0,1]: f(x)<c\} .
$$

Then

$$
\lim _{x \rightarrow a^{-}} f(x) \leq c
$$

and for any $x>a, f(x)>c$. Hence,

$$
f^{-1}[(c,+\infty)]=(a, 1] \text { or }[a, 1] .
$$

In all cases, the sub-level set is measurable.
If f is not strictly monotone, then consider $f_{n}=f+x / n . f_{n}$ is measurable and hence the limit function $\lim _{n} f_{n}=f$ is measurable.

Remark: You can also use the fact that monotone function has countable jumping discontinuity to show the measurability.

