THE CHINESE UNIVERSITY OF HONG KONG DEPARTMENT OF MATHEMATICS MATH3070 (Second Term, 2016–2017) Introduction to Topology Exercise 0 Preparation (Set Language)

Remarks

These exercises may give you an impression of the foundation needed in this course.

- 1. Let $f: X \to Y$ and $g: Y \to Z; A \subset X, B \subset Y$; if needed, $f(A) \subset B$. Determine the correctness of the following statements. Justify with proofs or counter-examples.
 - (a) $f(A_1 \cap A_2) = f(A_1) \cap f(A_2)$
 - (b) if $B_1 \subset B_2$ then $f^{-1}(B_1) \subset f^{-1}(B_2)$
 - (c) if $A_1 \subset A_2$ then $f(A_2 * A_1) = f(A_2) * f(A_1)$ where * may be \cup, \cap, \setminus (set minus), or \triangle (symmetric difference).
- 2. Define a relation ~ on \mathbb{R}^2 by $(x_1, y_1) \sim (x_2, y_2)$ if $x_1^2 y_1^2 = x_2^2 y_2^2$. Show that this is an equivalence relation. What are its equivalence classes?

For an equivalence relation \sim (not necessarily the above) on a set X, what is its quotient map q defined on X?

Under what condition does a function $f: W \to X/\sim$ has another $\tilde{f}: W \to X$ such that $f = q \circ \tilde{f}$?

- 3. Define a family of sets X_α for α ∈ A (index set) and the arbitrary product ∏_{α∈A} X_α. If there are functions f_α: X_α → Y, is it possible to define a function f: ∏_{α∈A} X_α → Y? On the other hands, if there are functions g_α: U → X_α, is it possible to define a function g: U → ∏_{α∈A} X_α?
- 4. Let A_α ⊂ X where α ∈ A. Define ⋃_{α∈A} A_α and ⋂_{α∈A} A_α.
 For B ⊂ A, what is the meaning of ⋃ { A_α : α ∈ B }? What is the meaning of all arbitrary unions of sets in { A_α : α ∈ A }?
 Let C be a set of sets. What is the notation ⋃C? What is ⋃B where B ⊂ C?
- 5. What is a countable or uncountable set? State some propositions about countability between a set and its image under a function.
- 6. What are the basic requirements of an algebraic group?

Give two examples of infinite group except \mathbb{Z} and \mathbb{R} . Also, give two examples of finite non-abelian group.