THE CHINESE UNIVERSITY OF HONG KONG
 Department of Mathematics
 MATH3070 (Second Term, 2016-2017)
 Introduction to Topology
 Exercise 0 Preparation (Set Language)

Remarks

These exercises may give you an impression of the foundation needed in this course.

1. Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z ; A \subset X, B \subset Y$; if needed, $f(A) \subset B$. Determine the correctness of the following statements. Justify with proofs or counter-examples.
(a) $f\left(A_{1} \cap A_{2}\right)=f\left(A_{1}\right) \cap f\left(A_{2}\right)$
(b) if $B_{1} \subset B_{2}$ then $f^{-1}\left(B_{1}\right) \subset f^{-1}\left(B_{2}\right)$
(c) if $A_{1} \subset A_{2}$ then $f\left(A_{2} * A_{1}\right)=f\left(A_{2}\right) * f\left(A_{1}\right)$ where $*$ may be \cup, \cap, \backslash (set minus), or \triangle (symmetric difference).
2. Define a relation \sim on \mathbb{R}^{2} by $\left(x_{1}, y_{1}\right) \sim\left(x_{2}, y_{2}\right)$ if $x_{1}^{2}-y_{1}^{2}=x_{2}^{2}-y_{2}^{2}$. Show that this is an equivalence relation. What are its equivalence classes?

For an equivalence relation \sim (not necessarily the above) on a set X, what is its quotient map q defined on X ?

Under what condition does a function $f: W \rightarrow X / \sim$ has another $\tilde{f}: W \rightarrow X$ such that $f=q \circ \tilde{f}$?
3. Define a family of sets X_{α} for $\alpha \in A$ (index set) and the arbitrary product $\prod_{\alpha \in A} X_{\alpha}$.

If there are functions $f_{\alpha}: X_{\alpha} \rightarrow Y$, is it possible to define a function $f: \prod_{\alpha \in A} X_{\alpha} \rightarrow Y$?
On the other hands, if there are functions $g_{\alpha}: U \rightarrow X_{\alpha}$, is it possible to define a function $g: U \rightarrow \prod_{\alpha \in A} X_{\alpha}$?
4. Let $A_{\alpha} \subset X$ where $\alpha \in A$. Define $\bigcup_{\alpha \in A} A_{\alpha}$ and $\bigcap_{\alpha \in A} A_{\alpha}$.

For $B \subset A$, what is the meaning of $\bigcup\left\{A_{\alpha}: \alpha \in B\right\}$? What is the meaning of all arbitrary unions of sets in $\left\{A_{\alpha}: \alpha \in A\right\}$?

Let \mathcal{C} be a set of sets. What is the notation $\cup \mathcal{C}$? What is $\bigcup \mathcal{B}$ where $\mathcal{B} \subset \mathcal{C}$?
5. What is a countable or uncountable set? State some propositions about countability between a set and its image under a function.
6. What are the basic requirements of an algebraic group?

Give two examples of infinite group except \mathbb{Z} and \mathbb{R}. Also, give two examples of finite non-abelian group.

