## THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH2050B Mathematical Analysis I (Fall 2016) Homework 3 Suggested Solutions to Starred Questions

1(a). (For the tutorial on 6 Oct) Show (without use of ratio test) that

$$\lim_{n \to \infty} \frac{n!}{n^n} = 0$$

Hint: If 2K < n then

$$\frac{n!}{n^n} < \frac{K(K-1)\cdots 3\cdot 2\cdot 1}{n\cdot n\cdots n\cdot n} < \left(\frac{1}{2}\right)^K$$

*Proof.* If 2K < n, then

$$\frac{n!}{n^n} = \frac{n(n-1)\cdots(2K+1)}{n^{n-2K}} \cdot \frac{2K(2K-1)(2K-2)\cdots2\cdot1}{n^{2K}} \\
< \frac{2K(2K-1)(2K-2)\cdots2\cdot1}{n^{2K}} \\
= \frac{2K(2K-1)\cdots(K+1)}{n^K} \cdot \frac{K(K-1)(K-2)\cdots2\cdot1}{n^K} \\
< \frac{K(K-1)(K-2)\cdots2\cdot1}{n^K} \\
< \frac{1}{2} \cdot \frac{1}{2} \cdots \frac{1}{2} \\
= \left(\frac{1}{2}\right)^K$$

Let  $\epsilon > 0$ . Using the fact that  $\lim_{k\to\infty} \left(\frac{1}{2}\right)^k = 0$ , there exists  $N \in \mathbb{N}$  such that for all  $k \ge N$ ,

$$\left(\frac{1}{2}\right)^k < \epsilon$$

In particular,

$$\left(\frac{1}{2}\right)^N < \epsilon$$

Now for n > 2N, we have, with K replaced by N, that

$$\frac{n!}{n^n} < \left(\frac{1}{2}\right)^N < \epsilon$$

Hence

$$\lim_{n \to \infty} \frac{n!}{n^n} = 0$$

1(b). Let b > 0. Show that  $b^n \ll n!$  in the sense that

$$\lim_{n \to \infty} \frac{b^n}{n!} = 0$$

*Proof.* We will apply the ratio test. If  $a_n := \frac{b^n}{n!} > 0$ , then

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{\frac{b^{n+1}}{(n+1)!}}{\frac{b^n}{n!}} = \lim_{n \to \infty} \frac{b}{n+1} = 0$$

Hence  $\frac{b^n}{n!}$  converges to 0.

2(a). Show that

$$\lim_{n \to \infty} n^{\frac{1}{n}} = 1$$

*Proof.* Let  $\epsilon > 0$ . Consider the inequality

$$|n^{\frac{1}{n}} - 1| < \epsilon$$

which, by algebraic manipulation, splits into two inequalities which must be satisfied simultaneously:

$$n > (1 - \epsilon)^n \tag{1}$$

$$n < (1+\epsilon)^n \tag{2}$$

Here (1) is trivial, since  $(1 - \epsilon)^n < 1 \le n$ .

Next we consider (2): By binomial theorem, we have:

$$(1+\epsilon)^n = \sum_{k=0}^n \binom{n}{k} \epsilon^k \ge \binom{n}{2} \epsilon^2 = \frac{n(n-1)}{2} \epsilon^2,$$

if n > 2.

Hence we choose  $N > 1 + \frac{2}{\epsilon^2}$  by Archimedean Property. By our choice of N, we have: for  $n \ge N$ ,

$$\frac{n(n-1)}{2}\epsilon^2 \ge \frac{n(N-1)}{2}\epsilon^2 > \frac{n[(1+\frac{2}{\epsilon^2})-1]}{2}\epsilon^2 = n,$$

which, combined with the above estimate, shows that for  $n \ge N$ ,

 $n < (1+\epsilon)^n$ 

Combining (1)(2) we have that for  $n \ge N$ ,

$$\left|n^{\frac{1}{n}} - 1\right| < \epsilon$$

Hence

$$\lim_{n \to \infty} n^{\frac{1}{n}} = 1$$

| Г |  | ٦ |  |
|---|--|---|--|
| L |  | J |  |
| 1 |  |   |  |

|   |   |   | 1 |  |
|---|---|---|---|--|
|   |   |   | 1 |  |
|   |   |   | 1 |  |
| 1 | _ | - | - |  |

3. (Together with the tutorial)

**Definition 1.** Let  $(x_n)$  be any sequence of real numbers. We define its partial sum

$$S_n := \sum_{k=1}^n x_k$$

and then the average of it by

$$A_n := \frac{S_n}{n}$$

(a) Show that if  $\lim_{n\to\infty} x_n = x \in \mathbb{R}$ , then

$$\lim_{n \to \infty} A_n = x.$$

- (b) (Tutorial Question)Show that the converse of (a) is not true by constructing a real sequence  $a_n$  whose average converges to a finite limit  $l \in \mathbb{R}$  but  $a_n$  itself diverges.
- (a) *Proof.* For simplicity of notations, we may first assume that x = 0. Let  $\epsilon > 0$ . Since  $x_n$  converges to x = 0, there is  $N_1 \in \mathbb{N}$  such that for  $n \ge N_1$ ,  $|x_n| < \frac{\epsilon}{2}$ .

By Archimedean Property, let  $N_2 \in \mathbb{N}$  such that  $N_2 > \frac{2|S_{N_1}|}{\epsilon}$ . Then for  $n \geq N_2$ , we have:

$$\left|\frac{x_1 + x_2 + \dots + x_n}{n}\right| = \frac{1}{n} |x_1 + \dots + x_{N_1} + x_{N_1+1} + \dots + x_n|$$
  

$$\leq \frac{1}{n} (|x_1 + \dots + x_{N_1}| + |x_{N_1+1}| + \dots + |x_n||)$$
  

$$\leq \frac{1}{n} \left(|S_{N_1}| + (n - N_1)\frac{\epsilon}{2}\right)$$
  

$$\leq \frac{|S_{N_1}|}{n} + \frac{\epsilon}{2}$$
  

$$< \frac{\epsilon}{2} + \frac{\epsilon}{2}$$
  

$$= \epsilon$$

This proves the case when x = 0.

Now we consider the general case. Let  $(x_n) \to x \in \mathbb{R}$ . Define  $y_n := x_n - x$ , then  $y_n \to 0$ . Applying the above result to  $y_n$ , we see that

$$\lim_{n \to \infty} \frac{y_1 + y_2 + \dots + y_n}{n} = 0$$

But

$$\frac{y_1 + y_2 + \dots + y_n}{n} = \frac{x_1 - x + x_2 - x + \dots + x_n - x}{n} = \frac{x_1 + x_2 + \dots + x_n}{n} - x$$

Hence by computation rules of limits, we have:

$$\lim_{n \to \infty} \frac{x_1 + x_2 + \dots + x_n}{n} = \lim_{n \to \infty} \frac{y_1 + y_2 + \dots + y_n}{n} + x = x.$$

(b) Let  $(x_n)$  be defined by  $x_n := (-1)^n$ . Then  $(x_n)$  diverges, but its average is computed to be:

$$A_n := \frac{x_1 + x_2 + \dots + x_n}{n} = \frac{(-1)^n - 1}{2n}$$

Noting that

$$-\frac{1}{n} \le A_n \le 0,$$

By squeeze law, we have  $\lim_{n\to\infty} A_n = 0$ .