THE CHINESE UNIVERSITY OF HONG KONG
 Department of Mathematics
 MATH2050B Mathematical Analysis I (Fall 2016)
 Homework 2 Suggested Solutions to Starred Questions

2. Let

$$
S:=\left\{\frac{1}{n}-\frac{1}{m}: m, n \in \mathbb{N}\right\}
$$

Find $\max S, \sup S, \min S, \inf S$, if they exist; Give your reasoning (including your nonexistence claim).

We recall the definition of maximum (minimum):
Definition 1. Let S be a nonempty subset of real numbers. We say $M \in \mathbb{R}$ is (the) maximum of S if both of the followings are true:
(a) $M \in S$.
(b) M is an upper bound for S, namely, for any $s \in S$, we have $s \leq M$.

Similarly, we define minimum:
Definition 2. Let S be a nonempty subset of real numbers. We say $m \in \mathbb{R}$ is (the) minimum of S if both of the followings are true:
(a) $m \in S$.
(b) m is a lower bound for S, namely, for any $s \in S$, we have $s \geq m$.

It follows easily from definition that maxima and minima are unique.

Solution:

We claim that
(a) $\sup S=1$.
(b) $\max S$ does not exist.
(c) $\inf S=-1$.
(d) $\min S$ does not exist.

Proof. (a) We prove that $\sup S=1$: First we show that 1 is an upper bound for S. Let $m, n \in \mathbb{N}$ be arbitrary. Note that $n \geq 1, m>0$, hence $\frac{1}{n} \leq 1$, and $\frac{1}{m}>0$ so that $-\frac{1}{m}<0$. This gives:

$$
\begin{equation*}
\frac{1}{n}-\frac{1}{m}<1-0=1 \tag{*}
\end{equation*}
$$

To show that 1 is the least upper bound, we use the useful criterion: $l \leq \sup S$ if for any $\epsilon>0$, there exists $s \in S$ such that $s+\epsilon>l$.
Now let $\epsilon>0$ be given. By Archimedean Property, there is some $m_{0} \in \mathbb{N}$ such that $m_{0}>\frac{1}{\epsilon}$, whence $\epsilon>\frac{1}{m_{0}}$. Take $n=1, m=m_{0}$, thus $s=\frac{1}{1}-\frac{1}{m_{0}}=1-\frac{1}{m_{0}} \in$ S so that we have $s+\epsilon=1-\frac{1}{m_{0}}+\epsilon>1$ by construction. Hence $\sup S=1$.
(b) $\max S$ does not exist.

We will prove by contradiction. Suppose S had a maximum $M \in \mathbb{R}$. Then M is an upper bound for S. Since 1 is the least upper bound for S, we have $1 \leq M$. However, we see from $(*)$ that for any $s \in S, s<1$. Since the maximum $M \in S$, we have $M<1$, which is a contradiction. Hence S does not have a maximum.
(c) $\inf S=-1$.

One may use similar arguments as in (a) to prove this, by the symmetry of m, n. We present here a different approach which exploits the symmetry of the set S :
For each $S \subseteq \mathbb{R}$, we denote $-S:=\{-x: x \in S\}$. In this question, S is symmetric in the sense that $S=-S$, which may be easily verified. Then our conclusion follows from the proposition below:
Proposition 1. Let S be a nonempty set of real numbers which is bounded above and below. Then:
i. $\inf S=-\sup (-S)$
ii. $\sup S=-\inf (-S)$
iii. $\min S=-\max (-S)$, provided that $\max (-S)$ exists in \mathbb{R}.
iv. $\max S=-\min (-S)$, provided that $\min (-S)$ exists in \mathbb{R}.

We prove (i) only. The others are similar.
Proof. Let $a=\inf S, b=\sup (-S)$.

- " $a \leq-b$ ": Let $\epsilon>0$ be arbitrary. We aim to show that there is $s \in S$ such that $s-\epsilon<-b$. Since $b=\sup (-S)$, for the same ϵ, there is $t \in-S$ such that $t+\epsilon>b$. But $t \in-S$, hence we let $s:=-t \in S$, and thus $s-\epsilon=-t-\epsilon<-b$. Since $\epsilon>0$ is arbitrary, we have $a \leq-b$.
- " $a \geq-b$ ": Let $u \in S$ be arbitrary. We aim to show that $u \geq-b$. Since $u \in S$, we have $-u \in-S$. Since b is an upper bound for $-S$, we have $b \geq-u$, whence $u \geq-b$. Since $u \in S$ is arbitrary, we have $a \geq-b$.

By the proposition, we have: $\inf S=-\sup (-S)=-\sup S=-1$. (Recall that S is 'symmetric')
(d) $\min S$ does not exist.

Suppose it had a minimum $m \in \mathbb{R}$. Then we would have $\max S=\max (-S)=$ $-\min S=-m$. But we have just shown that $\max S$ does not exist. This is a contradiction, and hence $\min S$ does not exist.
3. Let f, g be real valued functions on X which are bounded above. Show that

$$
\sup \{f(x)+g(x): x \in X\} \leq \sup \{f(x): x \in X\}+\sup \{g(x): x \in X\}
$$

or in convenient notations,

$$
\sup _{x \in X}(f(x)+g(x)) \leq \sup _{x \in X} f(x)+\sup _{x \in X} g(x) .
$$

Can strict inequality or equality happen?
Proof. Our first observation is that all the 3 suprema exist in \mathbb{R}, because f, g are bounded above.

It suffices to show that for any $y \in\{f(x)+g(x): x \in X\}, y \leq \sup \{f(x): x \in$ $X\}+\sup \{g(x): x \in X\}$.
Let $y \in\{f(x)+g(x): x \in X\}$ be arbitrary. Then there is $x_{0} \in X$ such that $y=f\left(x_{0}\right)+g\left(x_{0}\right)$. Observe that by definition, $f\left(x_{0}\right) \leq \sup \{f(x): x \in X\}$, and that $g\left(x_{0}\right) \leq \sup \{g(x): x \in X\}$. Hence $y \leq \sup \{f(x): x \in X\}+\sup \{g(x): x \in X\}$. Since y is arbitrary, we have:

$$
\sup \{f(x)+g(x): x \in X\} \leq \sup \{f(x): x \in X\}+\sup \{g(x): x \in X\}
$$

Example 1. (strict inequality)

$X=[0,1], f(x)=x, g(x)=-x$. Then $\sup \{f(x): x \in X\}=1, \sup \{g(x):$ $x \in X\}=0$, and that $\sup \{f(x): x \in X\}+\sup \{g(x): x \in X\}=1$. However, $f(x)+g(x)=0$, so that $\sup \{f(x)+g(x): x \in X\}=0$.

Example 2. (equality)
$X=[0,1], f(x)=1, g(x)=-1$. Then $\sup \{f(x): x \in X\}=1, \sup \{g(x): x \in$ $X\}=-1$, and that $\sup \{f(x): x \in X\}+\sup \{g(x): x \in X\}=0$. On the other hand, $f(x)+g(x)=0$, so that $\sup \{f(x)+g(x): x \in X\}=0$.
4. Let $\left(x_{n}\right)$ be a real sequence converging to $x \in \mathbb{R}$. Show by $\epsilon-N$ definition that
(a) $\lim _{n \rightarrow \infty}\left|x_{n}\right|=|x|$
(b) If $\alpha<x<\beta$ then there exists $N \in \mathbb{N}$ such that for any $n \geq N, \alpha<x_{n}<\beta$.

Proof. (a) Let $\epsilon>0$. Since x_{n} converges to x, there is $N \in \mathbb{N}$ such that for $n \geq N$, $\left|x_{n}-x\right|<\epsilon$. Now with the same N, for $n \geq N$, we have, by triangle inequality, that

$$
\left|\left|x_{n}\right|-|x|\right| \leq\left|x_{n}-x\right|<\epsilon
$$

Hence $\left|x_{n}\right|$ converges to $|x|$.
(b) Since $\alpha<x<\beta$, we let $\epsilon_{0}:=\min \{\beta-x, x-\alpha\}>0$. For this ϵ_{0}, by definition of convergence, there is $N \in \mathbb{N}$ such that for $n \geq N$,

$$
\left|x_{n}-x\right|<\epsilon_{0}
$$

On the one hand, $x_{n}-x<\epsilon_{0} \leq \beta-x$. Thus $x_{n}<\beta$ for $n \geq N$. On the other hand, for $n \geq N, x_{n}-x>-\epsilon_{0} \geq-(x-\alpha)$, whence $x_{n}>\alpha$. Hence $\alpha<x_{n}<\beta$ for $n \geq N$.
Remark: In the proof for (b) we could also let $\epsilon_{0}:=\frac{\min \{\beta-x, x-\alpha\}}{2}>0$, which would make the calculation slightly harder. However, the advantage is that it is always safer to use a smaller epsilon in general, since one may get into trouble obtaining only \geq instead of $>$ in some other cases.

