THE CHINESE UNIVERSITY OF HONG KONG
 DEPARTMENT OF MATHEMATICS
 MATH2050 (First Term, 2015-16)
 Mathematical Analysis I

Homework I

Questions with * will be marked.

1. Let $a, b \in \mathbb{R}$. Show that
(a)* $a \cdot 0=0$;
(b)* $-a=(-1) a$;
(c) $-(-a)=a$;
(d) $(-a)(-b)=a b$;
(e) $a^{2} \geq 0$;
(f) If $c<0$ and $a>b$ then $a c<b c$;
(g) If $a, b \geq 0$ then

$$
a<b \Leftrightarrow a^{2}<b^{2} \Leftrightarrow \sqrt{a}<\sqrt{b}
$$

where \sqrt{a} denotes the positive real number such that $(\sqrt{a})^{2}=a$; the exisitence of the square root is assumed and will be discussed later.
2. (a)* Show that $|x-a|<\varepsilon$ iff $a-\varepsilon<x<a+\varepsilon$.
(b) Find all $x \in \mathbb{R}$ satisfying $|x-1|>|x+1|$.
3. Let A be a nonempty subset of \mathbb{R} and $\ell \in \mathbb{R}$. Give the definition for each of the following and the corresponding negation:
(a) ${ }^{*} \ell$ is a lower bound of A;
(b) A is bounded below.
4. Let $\left(x_{n}\right),\left(y_{n}\right)$ be sequences converge to x, y respectively. Show that
(a) There exist $X, Y \in \mathbb{R}$ such that $\left|x_{n}\right| \leq X$ and $\left|y_{n}\right| \leq Y$ for all $n \in \mathbb{N}$;
(b)* $\lim _{n \rightarrow \infty}\left(x_{n}+y_{n}\right)=x+y$;
(c) $\lim _{n \rightarrow \infty}\left(x_{n} y_{n}\right)=x y$.

