THE CHINESE UNIVERSITY OF HONG KONG

DEPARTMENT OF MATHEMATICS

MATH2050 (First Term, 2012-2013)

Mathematical Analysis I

Homework I

Questions with * will be marked. Deadline for Homework I: 28th Sept 5pm.

- 1. Let $a, b \in \mathbb{R}$. Show that
 - (a)* $a \cdot 0 = 0$;
 - (b)* -a = (-1)a;
 - (c) -(-a) = a;
 - (d) (-a)(-b) = ab;
 - (e) $a^2 \ge 0$;
 - (f) If c < 0 and a > b then ac < bc;
 - (g) If $a, b \ge 0$ then

$$a < b \Leftrightarrow a^2 < b^2 \Leftrightarrow \sqrt{a} < \sqrt{b}$$
.

where \sqrt{a} denotes the positive real number such that $(\sqrt{a})^2 = a$; the existence of the square root is assumed and will be discussed later.

- 2. (a)* Show that $|x a| < \varepsilon$ iff $a \varepsilon < x < a + \varepsilon$.
 - (b) Find all $x \in \mathbb{R}$ satisfying |x-1| > |x+1|.
- 3. Let A be a nonempty subset of \mathbb{R} and $\ell \in \mathbb{R}$. Give the definition for each of the following and the corresponding negation:
 - (a)* ℓ is a lower bound of A;
 - (b) A is bounded below.
- 4. Let (x_n) , (y_n) be sequences converge to x, y respectively. Show that
 - (a) There exist $X, Y \in \mathbb{R}$ such that $|x_n| \leq X$ and $|y_n| \leq Y$ for all $n \in \mathbb{N}$;
 - (b)* $\lim_{n \to \infty} (x_n + y_n) = x + y;$
 - (c) $\lim_{n \to \infty} (x_n y_n) = xy$.