THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH2050B Mathematical Analysis I (Fall 2016) Homework 1 Suggested Solutions to Starred Questions

1.(a) $a \cdot 0 = 0$.

Proof.

$a \cdot 0 = a \cdot (0+0)$	(definition of 0)
$= a \cdot 0 + a \cdot 0$	(distributive law)

Adding $-(a \cdot 0)$ on both sides on the left (or right if you like), we have:

$$-(a \cdot 0) + a \cdot 0 = -(a \cdot 0) + (a \cdot 0 + a \cdot 0)$$

$$-(a \cdot 0) + a \cdot 0 = [-(a \cdot 0) + a \cdot 0] + a \cdot 0 \qquad (associativity of addition)$$

$$0 = 0 + a \cdot 0 \qquad (definition of additive inverse)$$

$$0 = a \cdot 0 \qquad (definition of 0)$$

1.(b) $-a = (-1) \cdot a$.

Proof. We will use the fact that additive inverses are unique in the following sense: Let $a \in \mathbb{R}$. Suppose there is some real number b such that

$$a+b=b+a=0,$$

then b = (-a), the additive inverse of a.

Now by the above, the definition of -a and commutativity of addition, it suffices to show that

$$(-1) \cdot a + a = 0$$

which is done as follows:

$$(-1) \cdot a + a = (-1) \cdot a + 1 \cdot a \qquad (definition of 1)$$
$$= [(-1) + 1] \cdot a \qquad (distributive law)$$
$$= 0 \cdot a \qquad (definition of additive inverse)$$
$$= 0 \qquad (by 1(a))$$

2(a) Show that $|x - a| < \epsilon$ if and only if

$$a - \epsilon < x < a + \epsilon$$

Remark: We can assume that $\epsilon > 0$.

Proof. " \implies " Suppose $|x - a| < \epsilon$ (Thus $\epsilon > 0$). Recall that

$$|x-a| = \begin{cases} x-a, \text{ if } x > a \\ a-x, \text{ if } x \le a \end{cases}$$

Hence we have: $(x > a \text{ and } x - a < \epsilon)$ or $(x \le a \text{ and } -x + a < \epsilon)$ By calculation, this gives: $(a < x < a + \epsilon)$ or $(a - \epsilon < x \le a)$ Hence we have $a - \epsilon < x < a + \epsilon$.

" \Leftarrow " Suppose $a - \epsilon < x < a + \epsilon$ (Thus $\epsilon > 0$). Then adding -a on both sides,

$$-\epsilon < x - a < \epsilon.$$

Hence

$$(-\epsilon < x - a < \epsilon \text{ and } x - a \ge 0) \text{ or } (-\epsilon < x - a < \epsilon \text{ and } x - a < 0),$$

namely

$$(x - a < \epsilon \text{ and } x - a \ge 0) \text{ or } (-x + a < \epsilon \text{ and } x - a < 0).$$

Then,

$$(|x-a| < \epsilon \text{ and } x-a \ge 0) \text{ or } (|x-a| < \epsilon \text{ and } x-a < 0),$$

and hence

 $|x-a| < \epsilon.$

3(a) Let A be a nonempty subset of real numbers and $l \in \mathbb{R}$. State the definition and the negation for the following:

l is a lower bound of A.

Solution:

Definiton: Let A be a nonempty subset of real numbers and $l \in \mathbb{R}$. We say l is a lower bound of A if for each $a \in A$, we have $a \ge l$.

Negation: Let A be a nonempty subset of real numbers and $l \in \mathbb{R}$. We say l is NOT a lower bound of A if there exists $a \in A$ such that a < l.

4(b) Let $(x_n), (y_n)$ be sequences of real numbers converging to $x, y \in \mathbb{R}$ respectively. Show that

$$\lim_{n \to \infty} (x_n + y_n) = x + y.$$

Proof. Let $\epsilon > 0$. Since x_n converges to $x \in \mathbb{R}$, there exists $N_1 \in \mathbb{N}$ such that for any $n \geq N_1$, we have

$$|x_n - x| < \frac{\epsilon}{2}.$$

Similarly, since y_n converges to $y \in \mathbb{R}$, there exists $N_2 \in \mathbb{N}$ such that for any $n \ge N_2$, we have

$$|y_n - y| < \frac{\epsilon}{2}.$$

We take $N = \max\{N_1, N_2\}$. For $n \ge N$, both inequalities above are satisfied, thus by triangle inequality,

$$|x_n + y_n - x - y| \le |x_n - x| + |y_n - y| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

Hence $(x_n + y_n)$ converges to x + y.

Remark: The numbers $\frac{\epsilon}{2}$ are chosen so as to make the final sum add to ϵ , which is what we want ultimately. Similarly, if we had 3 or more, say, m such inequalities which is needed to sum to ϵ , since ϵ is arbitrary, we would then take each number in the inequalities as $\epsilon/3$, ϵ/m , etc.