THE CHINESE UNIVERSITY OF HONG KONG
 Department of Mathematics
 MATH2050B Mathematical Analysis I (Fall 2016)
 Homework 1 Suggested Solutions to Starred Questions

1.(a) $a \cdot 0=0$.

Proof.

$$
\begin{aligned}
a \cdot 0 & =a \cdot(0+0) & & (\text { definition of } 0) \\
& =a \cdot 0+a \cdot 0 & & (\text { distributive law })
\end{aligned}
$$

Adding $-(a \cdot 0)$ on both sides on the left (or right if you like), we have:

$$
\begin{aligned}
-(a \cdot 0)+a \cdot 0 & =-(a \cdot 0)+(a \cdot 0+a \cdot 0) & & \\
-(a \cdot 0)+a \cdot 0 & =[-(a \cdot 0)+a \cdot 0]+a \cdot 0 & & \text { (associativity of addition) } \\
0 & =0+a \cdot 0 & & \text { (definition of additive inverse) } \\
0 & =a \cdot 0 & & \text { (definition of 0) }
\end{aligned}
$$

1.(b) $-a=(-1) \cdot a$.

Proof. We will use the fact that additive inverses are unique in the following sense:
Let $a \in \mathbb{R}$. Suppose there is some real number b such that

$$
a+b=b+a=0
$$

then $b=(-a)$, the additive inverse of a.
Now by the above, the definition of $-a$ and commutativity of addition, it suffices to show that

$$
(-1) \cdot a+a=0
$$

which is done as follows:

$$
\begin{aligned}
(-1) \cdot a+a & =(-1) \cdot a+1 \cdot a & & \text { (definition of } 1) \\
& =[(-1)+1] \cdot a & & \text { (distributive law) } \\
& =0 \cdot a & & \text { (definition of additive inverse) } \\
& =0 & & \text { (by } 1(\text { a) })
\end{aligned}
$$

2(a) Show that $|x-a|<\epsilon$ if and only if

$$
a-\epsilon<x<a+\epsilon
$$

Remark: We can assume that $\epsilon>0$.
Proof. " " Suppose $|x-a|<\epsilon$ (Thus $\epsilon>0$).
Recall that

$$
|x-a|=\left\{\begin{array}{l}
x-a, \text { if } x>a \\
a-x, \text { if } x \leq a
\end{array}\right.
$$

Hence we have: $(x>a$ and $x-a<\epsilon)$ or ($x \leq a$ and $-x+a<\epsilon$)
By calculation, this gives: $(a<x<a+\epsilon)$ or $(a-\epsilon<x \leq a)$
Hence we have $a-\epsilon<x<a+\epsilon$.
$" \Longleftarrow "$ Suppose $a-\epsilon<x<a+\epsilon$ (Thus $\epsilon>0$). Then adding $-a$ on both sides,

$$
-\epsilon<x-a<\epsilon
$$

Hence

$$
(-\epsilon<x-a<\epsilon \text { and } x-a \geq 0) \text { or }(-\epsilon<x-a<\epsilon \text { and } x-a<0)
$$

namely

$$
(x-a<\epsilon \text { and } x-a \geq 0) \text { or }(-x+a<\epsilon \text { and } x-a<0) .
$$

Then,

$$
(|x-a|<\epsilon \text { and } x-a \geq 0) \text { or }(|x-a|<\epsilon \text { and } x-a<0),
$$

and hence

$$
|x-a|<\epsilon
$$

3(a) Let A be a nonempty subset of real numbers and $l \in \mathbb{R}$. State the definition and the negation for the following:
l is a lower bound of A.

Solution:

Definiton: Let A be a nonempty subset of real numbers and $l \in \mathbb{R}$. We say l is a lower bound of A if for each $a \in A$, we have $a \geq l$.
Negation: Let A be a nonempty subset of real numbers and $l \in \mathbb{R}$. We say l is NOT a lower bound of A if there exists $a \in A$ such that $a<l$.

4(b) Let $\left(x_{n}\right),\left(y_{n}\right)$ be sequences of real numbers converging to $x, y \in \mathbb{R}$ respectively. Show that

$$
\lim _{n \rightarrow \infty}\left(x_{n}+y_{n}\right)=x+y
$$

Proof. Let $\epsilon>0$. Since x_{n} converges to $x \in \mathbb{R}$, there exists $N_{1} \in \mathbb{N}$ such that for any $n \geq N_{1}$, we have

$$
\left|x_{n}-x\right|<\frac{\epsilon}{2} .
$$

Similarly, since y_{n} converges to $y \in \mathbb{R}$, there exists $N_{2} \in \mathbb{N}$ such that for any $n \geq N_{2}$, we have

$$
\left|y_{n}-y\right|<\frac{\epsilon}{2} .
$$

We take $N=\max \left\{N_{1}, N_{2}\right\}$. For $n \geq N$, both inequalities above are satisfied, thus by triangle inequality,

$$
\left|x_{n}+y_{n}-x-y\right| \leq\left|x_{n}-x\right|+\left|y_{n}-y\right|<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon .
$$

Hence $\left(x_{n}+y_{n}\right)$ converges to $x+y$.
Remark: The numbers $\frac{\epsilon}{2}$ are chosen so as to make the final sum add to ϵ, which is what we want ultimately. Similarly, if we had 3 or more, say, m such inequalities which is needed to sum to ϵ, since ϵ is arbitrary, we would then take each number in the inequalities as $\epsilon / 3, \epsilon / m$, etc.

